seafloor morphology
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 24)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
pp. 1-118
Author(s):  
Garrett A. Mitchell ◽  
Larry A. Mayer ◽  
Jamshid J. Gharib

Commercial success of marine seep hunting exploration campaigns involves acquisition of high-quality bathymetry and backscatter along with targeted coring of seep sediments. The sharp lateral chemical gradient encompassing seafloor seeps requires accurate identification of seep sites from high-resolution acoustic data. Active seeps featuring plumes of gas bubbles and oil droplets rising into the water column can be imaged in modern multibeam echosounders providing an effective approach to remotely characterizing seafloor seeps. Interpreting the seafloor position of gas plume emissions in multibeam data using existing mapping methodology is hindered by slow processing due to large files sizes, a manual “by eye” qualitative assessment of each sonar ping searching for plume anomalies, skill and fatigue of the geoscientist, and environmental or acquisition artifacts that can mask the precise location of gas emission on the seafloor. These limitations of midwater backscatter mapping create a qualitative dataset with varying inherent positional errors that can lead to missed or incorrect observations about seep-related seafloor features and processes. By vertically integrating midwater multibeam amplitude samples, a two-dimensional midwater backscatter raster can be generated and draped over seafloor morphology, providing a synoptic overview of the spatial distribution of gas plume emission sites for improved interpretation. A multibeam midwater dataset from NOAA Cruise EX1402L2 in the northwestern Gulf of Mexico is reprocessed using a vertical amplitude stacking technique. Midwater backscatter surfaces are compared to digitized plume positions collected during the survey for a comparison into assessing uncertainty in mapping approaches and an assessment of uncertainty. Results show that the accuracy of digitized geopicks over selected plume clusters vary considerably when compared to the midwater backscatter amplitude maps. This mapping technique offers multiple advantages over traditional geopicking from cost-effectiveness, offshore efficiency, repeatability, and higher accuracy, ultimately improving the detectability and sampling of active seafloor seeps through precisely located cores.


2021 ◽  
Vol 8 ◽  
Author(s):  
Marcela Montserrat Landero Figueroa ◽  
Miles J. G. Parsons ◽  
Benjamin J. Saunders ◽  
Ben Radford ◽  
Iain M. Parnum

Demersal fishes constitute an essential component of the continental shelf ecosystem, and a significant element of fisheries catch around the world. However, collecting distribution and abundance data of demersal fish, necessary for their conservation and management, is usually expensive and logistically complex. The increasing availability of seafloor mapping technologies has led to the opportunity to exploit the strong relationship demersal fish exhibit with seafloor morphology to model their distribution. Multibeam echo-sounder (MBES) systems are a standard method to map seafloor morphology. The amount of acoustic energy reflected by the seafloor (backscatter) is used to estimate specific characteristics of the seafloor, including acoustic hardness and roughness. MBES data including bathymetry and depth derivatives were used to model the distribution of Abalistes stellatus, Gymnocranius grandoculis, Lagocephalus sceleratus, Lethrinus miniatus, Loxodon macrorhinus, Lutjanus sebae, and Scomberomorus queenslandicus. The possible improvement of model accuracy by adding the seafloor backscatter was tested in three different areas of the Ningaloo Marine Park off the west coast of Australia. For the majority of species, depth was a primary variable explaining their distribution in the three study sites. Backscatter was identified to be an important variable in the models, but did not necessarily lead to a significant improvement in the demersal fish distribution models’ accuracy. Possible reasons for this include: the depth and derivatives were capturing the significant changes in the habitat, or the acoustic data collected with a high-frequency MBES were not capturing accurately relevant seafloor characteristics associated with the species distribution. The improvement in the accuracy of the models for certain species using data already available is an encouraging result, which can have a direct impact in our ability to monitor these species.


2021 ◽  
pp. 106675
Author(s):  
C. Roque ◽  
F.J. Hernández-Molina ◽  
P. Madureira ◽  
R. Quartau ◽  
V. Magalhães ◽  
...  

2021 ◽  
Vol 42 (2) ◽  
Author(s):  
Gabriella Di Martino ◽  
Sara Innangi ◽  
Marco Sacchi ◽  
Renato Tonielli

2021 ◽  
Author(s):  
Cecilia Cabrera ◽  
Ruth Durán ◽  
Pere Puig ◽  
Jorge Guillén ◽  
Araceli Muñoz ◽  
...  

<p>Submarine canyons are morphological features found along continental margins that play a key role channeling and connecting sediment from continental shelves to the abyssal plains. The current morphological characterization of the Blanes and Cap de Creus canyon heads, located on the Catalan continental margin (NW Mediterranean Sea), has been recently conducted during the CRIMA cruise in September 2020 using high-resolution (4 m grid size) multibeam bathymetry data. These data have been compared with a previous dataset collected in 2004 during the ESPACE project to evaluate the morphological changes during this 16-year interval. Since these canyon heads are located at shallow water depths and at short distances from the shoreline, their short-term evolution is related to the sediment dynamics on the continental shelf.</p><p>A large-scale change in the seafloor morphology was observed in the Blanes canyon head, indicating the prevalence of erosion in the western canyon rim and non-deposition in the eastern rim. In the Cap de Creus canyon head, the excavation of pre-existing erosive structures was also evidenced in the southwestern canyon rim. These changes mainly happen in the area where the shelf is narrower, which coincide with the main zone of dense water advection along the shelf and toward the canyon interior. The different small-scale morphological evolution between both canyon heads seems to be related to the local geological characteristic of the subsurface deposits of the continental shelf. The Blanes canyon head incises a succession of relict (Holocene) sediment bodies that can act as a source of erodible sediments to the canyon, mainly during strong storms. The continental shelf in the vicinity of the Cap de Creus canyon head, however, is characterized by a rocky substratum (Paleozoic) with a limited sediment coverage and numerous erosive features that evidence relative sand starvation. This creates a greater erosive resistance, although the erosive character of strong storms and major dense-shelf water cascading events occurring during the studied time interval is evident. Additionally, small changes in the shelf bedforms indicate that such high-energetic oceanographic processes also modify the fine-scale seafloor morphology.</p><p>These results reveal that both submarine canyon heads are dynamic and sensitive to oceanographic processes that enhance the erosion and transport of sediment from the shelf into the canyon, particularly during energetic storms and dense shelf water cascading events. Nevertheless, their small-scale evolution seems to be closely related to the type of geological substrate of the shelf on which they are developing.</p><p>This study has received funding from the ABRIC (RTI2018-096434-B-I00) and CRIMA (RTI2018-095770-B-I00) Spanish Research Projects, the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 867471 and the Generalitat de Catalunya (2017 SGR-663 and -1588). This work is contributing to the ICM’s ‘Center of Excellence’ Severo Ochoa (CEX2019-000928-S). The authors thank the Secretaría General de Pesca and Tragsa for the 2004 ESPACE Project dataset.</p>


2021 ◽  
Author(s):  
Ruth Durán ◽  
Pere Puig ◽  
Araceli Muñoz ◽  
Claudio Lo Iacono ◽  
Jorge Guillén ◽  
...  

<p>The north-western Mediterranean continental margin is one of the few regions in the world where bottom trawling has been continuously practised since several decades. Among the existing trawling techniques, the one practised on this region is the "otter trawling", which has a strong impact on the seafloor morphology via scraping and ploughing, especially on muddy substrates. High-resolution multibeam bathymetry and backscatter data, side scan sonar images, sediment cores and satellite based Vessel Monitoring System (VMS) data have been integrated to investigate the impact of bottom trawling on the seafloor morphology of the northern Catalan continental shelf (NW Mediterranean). Satellite-based navigation tracks from bottom trawlers operating in the study area during 6 years (2006-2011) reveal the spatial distribution of fishing grounds and the occurrence of an intense trawling effort around the 50-60 m isobaths, since trawling is banned at shallow depths. Backscatter imagery shows a narrow (120-250 m wide) and discontinuous high backscatter facies along this depth range, extending parallel to the coastline for more than 40 km from Portbou to l’Estartit. In the bathymetric data, this high backscatter region also coincides with an abrupt change in the mean seafloor gradient (from 0.8° in the inner shelf to 0.4° in the middle shelf), or locally with a narrow (50-150 m wide) slightly depressed (0.2-0.6 m deep) channeled morphology. Side-scan sonar images display high density of trawl marks generated by fishing gears in this area. Further offshore, scattered narrower trawl hauls are also observed on the middle shelf (60-90 m deep), where they can be traced across several thousands of meters. Sediment cores retrieved from the area of high backscatter and largest trawling intensity display sediment coarsening in the upper layers (0-4 cm) caused by winnowing of finer fractions. These findings demonstrate that chronic stirring, mixing and erosion of surface sediments induced by recurrent trawling persisting over the same fishing grounds can cause long-term morphological and sedimentary changes on the continental shelf seafloor.</p><p>This study has received funding from the ABIDES (Assessment of Bottom-trawling Impacts in the Deep-sea Sediments) Spanish Research Project (CTM2015-65142-R) and the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement No. 867471. Additional funds were provided by the Generalitat de Catalunya Generalitat de Catalunya (2017 SGR-663 and -1588) and by the Spanish Research Project ABRIC (RTI2018-096434-B-I00). This work is contributing to the ICM’s ‘Center of Excellence’ Severo Ochoa (CEX2019-000928-S). The authors wish to thank the Secretaría General de Pesca and Tragsa for the 2004 Espace Project dataset.</p>


Minerals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 72
Author(s):  
Jaewoo Jung ◽  
Youngtak Ko ◽  
Joohan Lee ◽  
Kiho Yang ◽  
Young Kyu Park ◽  
...  

The second Antarctic station of South Korea was constructed at Terra Nova Bay, East Antarctica, but local seafloor morphology and clay mineralogical characteristics are still not fully understood. Its small bay is connected to a modern Campbell Glacier, cliffs, and raised beaches along the coastline. Fourteen sampling sites to collect surface sediments were chosen in the small bay for grain size and clay mineral analyses to study the sediment source and sediment-transport process with multibeam bathymetry and sub-bottom profiles. Under the dominant erosional features (streamlined feature and meltwater channel), icebergs are the major geological agent for transport and deposition of coarse-sized sediments along the edge of glaciers in summer, and thus the study area can reveal the trajectory of transport by icebergs. Glacier meltwater is an important agent to deposit the clay-sized detritus and it results from the dominance of the illite content occurring along the edge of Campbell Glacier Tongue. The high smectite content compared to Antarctic sediments may be a result of the source of the surrounding volcanic rocks around within the Melbourne Volcanic Province.


2021 ◽  
Vol 8 ◽  
Author(s):  
Wisnu S. Priyanto ◽  
James E. Hunt ◽  
Muhammad Hanif ◽  
David R. Tappin ◽  
Haryadi Permana ◽  
...  

The flank failure and collapse of Anak Krakatau on December 22nd, 2018 triggered a destructive tsunami. Whether the prior activity of the volcano led to this collapse, or it was triggered by another means, remains a challenge to understand. This study seeks to investigate the recent volcano submarine mass-landslide deposit and emplacement processes, including the seafloor morphology of the flank collapse and the landslide deposit extent. Bathymetry and sparker seismic data were used during this study. Bathymetry data collected in August, 2019 shows the run-out area and the seafloor landslide deposit morphology. Bathymetry data acquired in May, 2017, is used as the base limit of the collapse to estimate the volume of the flank collapse. Comparisons between seismic data acquired in 2017 and 2019 provide an insight into the landslide emplacement processes, the deposit sequence, and structure below the seafloor. From these results we highlight two areas of the submarine-mass landslide deposit, one proximal to Anak Krakatau island (∼1.6 km) and one distal (∼1.4 km). The resulting analysis suggests that the submarine-mass landslide deposit might be produced by a frontally compressional, faulted, landslide, triggered by the critical stability slope, and due to the recent volcanic activity. Blocky seabed features clearly lie to the southwest of Anak Krakatau, and may represent the collapse blocks of the landslide. The seismic analysis of the data acquired in August, 2019 reveals that the blocky facies extends to ∼1.62 km in the width around Anak Krakatau, and the block thicknesses vary up to 70.4 m. The marine data provides a new insight into the landslide run out and extent, together with the landslide deposit morphology and structure that are not available from satellite imagery or subaerial surveys. We conclude that the landslide run out area southwest of the recent collapse, is ∼7.02 ± 0.21 km2.


Author(s):  
Gemma Ercilla ◽  
Juan-Tomás Vázquez ◽  
Belén Alonso ◽  
Patricia Bárcenas ◽  
David Casas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document