acyclic orientations
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Fengming Dong ◽  
Jun Ge ◽  
Helin Gong ◽  
Bo Ning ◽  
Zhangdong Ouyang ◽  
...  

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Nantel Bergeron ◽  
Cesar Ceballos

International audience We introduce a Hopf algebra structure of subword complexes, including both finite and infinite types. We present an explicit cancellation free formula for the antipode using acyclic orientations of certain graphs, and show that this Hopf algebra induces a natural non-trivial sub-Hopf algebra on c-clusters in the theory of cluster algebras.


2020 ◽  
Vol 34 (06) ◽  
pp. 10136-10143
Author(s):  
Robert Ganian ◽  
Thekla Hamm ◽  
Topi Talvitie

We consider the problem of counting the number of DAGs which are Markov-equivalent, i.e., which encode the same conditional independencies between random variables. The problem has been studied, among others, in the context of causal discovery, and it is known that it reduces to counting the number of so-called moral acyclic orientations of certain undirected graphs, notably chordal graphs.Our main empirical contribution is a new algorithm which outperforms previously known exact algorithms for the considered problem by a significant margin. On the theoretical side, we show that our algorithm is guaranteed to run in polynomial time on a broad class of chordal graphs, including interval graphs.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050017
Author(s):  
Hery Randriamaro

The Tutte polynomial was originally a bivariate polynomial enumerating the colorings of a graph and of its dual graph. But it reveals more of the internal structure of the graph like its number of forests, of spanning subgraphs, and of acyclic orientations. In 2007, Ardila extended the notion of Tutte polynomial to hyperplane arrangements, and computed the Tutte polynomials of the classical root systems for certain prime powers of the first variable at the same time. In this paper, we compute the Tutte polynomial of ideal arrangements. These arrangements were introduced in 2006 by Sommers and Tymoczko, and are defined for ideals of root systems. For the ideals of classical root systems, we bring a slight improvement of the finite field method by showing that it can applied on any finite field whose cardinality is not a minor of the matrix associated to the studied hyperplane arrangement. Computing the minor set associated to an ideal of classical root systems particularly permits us to deduce the Tutte polynomials of the classical root systems. For the ideals of the exceptional root systems of type [Formula: see text], [Formula: see text], and [Formula: see text], we use the formula of Crapo.


Author(s):  
Topi Talvitie ◽  
Mikko Koivisto

Exploring directed acyclic graphs (DAGs) in a Markov equivalence class is pivotal to infer causal effects or to discover the causal DAG via appropriate interventional data. We consider counting and uniform sampling of DAGs that are Markov equivalent to a given DAG. These problems efficiently reduce to counting the moral acyclic orientations of a given undirected connected chordal graph on n vertices, for which we give two algorithms. Our first algorithm requires O(2nn4) arithmetic operations, improving a previous superexponential upper bound. The second requires O(k!2kk2n) operations, where k is the size of the largest clique in the graph; for bounded-degree graphs this bound is linear in n. After a single run, both algorithms enable uniform sampling from the equivalence class at a computational cost linear in the graph size. Empirical results indicate that our algorithms are superior to previously presented algorithms over a range of inputs; graphs with hundreds of vertices and thousands of edges are processed in a second on a desktop computer.


Sign in / Sign up

Export Citation Format

Share Document