tutte polynomials
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 20)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
Vol 411 ◽  
pp. 126496
Author(s):  
Tianlong Ma ◽  
Xian’an Jin ◽  
Fuji Zhang
Keyword(s):  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ryan L. Mann

AbstractWe establish a classical heuristic algorithm for exactly computing quantum probability amplitudes. Our algorithm is based on mapping output probability amplitudes of quantum circuits to evaluations of the Tutte polynomial of graphic matroids. The algorithm evaluates the Tutte polynomial recursively using the deletion–contraction property while attempting to exploit structural properties of the matroid. We consider several variations of our algorithm and present experimental results comparing their performance on two classes of random quantum circuits. Further, we obtain an explicit form for Clifford circuit amplitudes in terms of matroid invariants and an alternative efficient classical algorithm for computing the output probability amplitudes of Clifford circuits.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Samir B. Hadid ◽  
Rabha W. Ibrahim

AbstractThere are different approaches that indicate the dynamic of the growth of microbe. In this research, we simulate the growth by utilizing the concept of fractional calculus. We investigate a fractional system of integro-differential equations, which covers the subtleties of the diffusion between infected and asymptomatic cases. The suggested system is applicable to distinguish the presentation of growth level of the infection and to approve if its mechanism is positively active. An optimal solution under simulation mapping assets is considered. The estimated numerical solution is indicated by employing the fractional Tutte polynomials. Our methodology is based on the Atangana–Baleanu calculus (ABC). We assess the recommended system by utilizing real data.


2021 ◽  
Vol 181 ◽  
pp. 105414
Author(s):  
Rodica Dinu ◽  
Christopher Eur ◽  
Tim Seynnaeve
Keyword(s):  

2021 ◽  
Vol 207 (2) ◽  
pp. 594-603
Author(s):  
B. S. Bychkov ◽  
A. A. Kazakov ◽  
D. V. Talalaev

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Abdulgani Şahin

AbstractIn this study, we introduce the relationship between the Tutte polynomials and dichromatic polynomials of (2,n)-torus knots. For this aim, firstly we obtain the signed graph of a (2,n)-torus knot, marked with {+} signs, via the regular diagram of its. Whereupon, we compute the Tutte polynomial for this graph and find a generalization through these calculations. Finally we obtain dichromatic polynomial lying under the unmarked states of the signed graph of the (2,n)-torus knots by the generalization.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Jose ́ Alejandro Samper

International audience Motivated by a question of Duval and Reiner about higher Laplacians of simplicial complexes, we describe various relaxations of the defining axioms of matroid theory to obtain larger classes of simplicial complexes that contain pure shifted simplicial complexes. The resulting classes retain some of the matroid properties and allow us to classify matroid properties according to the relevant axioms needed to prove them. We illustrate this by discussing Tutte polynomials. Furthermore, we extend a conjecture of Stanley on h-vectors and provide evidence to show that the extension is better suited than matroids to study the conjecture.


2020 ◽  
Vol 29 (03) ◽  
pp. 2050004
Author(s):  
Hery Randriamaro

The Tutte polynomial is originally a bivariate polynomial which enumerates the colorings of a graph and of its dual graph. Ardila extended in 2007 the definition of the Tutte polynomial on the real hyperplane arrangements. He particularly computed the Tutte polynomials of the hyperplane arrangements associated to the classical Weyl groups. Those associated to the exceptional Weyl groups were computed by De Concini and Procesi one year later. This paper has two objectives: On the one side, we extend the Tutte polynomial computing to the complex hyperplane arrangements. On the other side, we introduce a wider class of hyperplane arrangements which is that of the symmetric hyperplane arrangements. Computing the Tutte polynomial of a symmetric hyperplane arrangement permits us to deduce the Tutte polynomials of some hyperplane arrangements, particularly of those associated to the imprimitive reflection groups.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050017
Author(s):  
Hery Randriamaro

The Tutte polynomial was originally a bivariate polynomial enumerating the colorings of a graph and of its dual graph. But it reveals more of the internal structure of the graph like its number of forests, of spanning subgraphs, and of acyclic orientations. In 2007, Ardila extended the notion of Tutte polynomial to hyperplane arrangements, and computed the Tutte polynomials of the classical root systems for certain prime powers of the first variable at the same time. In this paper, we compute the Tutte polynomial of ideal arrangements. These arrangements were introduced in 2006 by Sommers and Tymoczko, and are defined for ideals of root systems. For the ideals of classical root systems, we bring a slight improvement of the finite field method by showing that it can applied on any finite field whose cardinality is not a minor of the matrix associated to the studied hyperplane arrangement. Computing the minor set associated to an ideal of classical root systems particularly permits us to deduce the Tutte polynomials of the classical root systems. For the ideals of the exceptional root systems of type [Formula: see text], [Formula: see text], and [Formula: see text], we use the formula of Crapo.


Sign in / Sign up

Export Citation Format

Share Document