tamari lattices
Recently Published Documents


TOTAL DOCUMENTS

19
(FIVE YEARS 3)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Henri Mühle

AbstractOrdering permutations by containment of inversion sets yields a fascinating partial order on the symmetric group: the weak order. This partial order is, among other things, a semidistributive lattice. As a consequence, every permutation has a canonical representation as a join of other permutations. Combinatorially, these canonical join representations can be modeled in terms of arc diagrams. Moreover, these arc diagrams also serve as a model to understand quotient lattices of the weak order. A particularly well-behaved quotient lattice of the weak order is the well-known Tamari lattice, which appears in many seemingly unrelated areas of mathematics. The arc diagrams representing the members of the Tamari lattices are better known as noncrossing partitions. Recently, the Tamari lattices were generalized to parabolic quotients of the symmetric group. In this article, we undertake a structural investigation of these parabolic Tamari lattices, and explain how modified arc diagrams aid the understanding of these lattices.


10.37236/7844 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

We generalize the Tamari lattice by extending the notions of $231$-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients of the symmetric group $\mathfrak{S}_{n}$.  We show bijectively that these three objects are equinumerous.  We show how to extend these constructions to parabolic quotients of any finite Coxeter group.  The main ingredient is a certain aligned condition of inversion sets; a concept which can in fact be generalized to any reduced expression of any element in any (not necessarily finite) Coxeter group.


2018 ◽  
Vol 371 (4) ◽  
pp. 2575-2622 ◽  
Author(s):  
Cesar Ceballos ◽  
Arnau Padrol ◽  
Camilo Sarmiento
Keyword(s):  

2017 ◽  
Vol 61 ◽  
pp. 215-221
Author(s):  
Cesar Ceballos ◽  
Arnau Padrol ◽  
Camilo Sarmiento
Keyword(s):  

2015 ◽  
Vol 134 ◽  
pp. 58-97 ◽  
Author(s):  
Grégory Châtel ◽  
Viviane Pons
Keyword(s):  

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Louis-François Préville-Ratelle ◽  
Xavier Viennot

International audience For any finite path $v$ on the square lattice consisting of north and east unit steps, we construct a poset Tam$(v)$ that consists of all the paths lying weakly above $v$ with the same endpoints as $v$. For particular choices of $v$, we recover the traditional Tamari lattice and the $m$-Tamari lattice. In particular this solves the problem of extending the $m$-Tamari lattice to any pair $(a; b)$ of relatively prime numbers in the context of the so-called rational Catalan combinatorics.For that purpose we introduce the notion of canopy of a binary tree and explicit a bijection between pairs $(u; v)$ of paths in Tam$(v)$ and binary trees with canopy $v$. Let $(\overleftarrow{v})$ be the path obtained from $v$ by reading the unit steps of $v$ in reverse order and exchanging east and north steps. We show that the poset Tam$(v)$ is isomorphic to the dual of the poset Tam$(\overleftarrow{v})$ and that Tam$(v)$ is isomorphic to the set of binary trees having the canopy $v$, which is an interval of the ordinary Tamari lattice. Thus the usual Tamari lattice is partitioned into (smaller) lattices Tam$(v)$, where the $v$’s are all the paths of length $n-1$ on the square lattice.We explain possible connections between the poset Tam$(v)$ and (the combinatorics of) the generalized diagonal coinvariant spaces of the symmetric group. Pour tout chemin $v$ sur le réseau carré formé de pas Nord et Est, nous construisons un ensemble partiellement ordonné Tam $(v)$ dont les éléments sont les chemins au dessus de $v$ et ayant les mêmes extrémités. Pour certains choix de $v$ nous retrouvons le classique treillis de Tamari ainsi que son extension $m$-Tamari. En particulier nous résolvons le problème d’étendre le treillis $m$-Tamari à toute paire $(a; b)$ d’entiers premiers entre eux dans le contexte de la combinatoire rationnelle de Catalan.Pour ceci nous introduisons la notion de canopée d’un arbre binaire et explicitons une bijection entre les paires $(u; v)$ de chemins dans Tam$(v)$ et les arbres binaires ayant la canopée $v$. Soit $(\overleftarrow{v})$ le chemin obtenu en lisant les pas en ordre inverse et en échangeant les pas Est et Nord. Nous montrons que Tam$(v)$ est isomorphe au dual de Tam$(\overleftarrow{v})$ et que Tam$(v)$ est isomorphe à l’ensemble des arbres binaires ayant la canopée $v$, qui est un intervalle du treillis de Tamari ordinaire. Ainsi le traditionnel treillis de Tamari admet une partition en plus petits treillis Tam$(v)$, où les $v$ sont tous les chemins de longueur $n-1$ sur le réseau carré. Enfin nous explicitons les liens possibles entre l’ensemble ordonné Tam$(v)$ et (la combinatoire des) espaces diagonaux coinvariants généralisés du groupe symétrique.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Viviane Pons

International audience We introduce a new combinatorial structure: the metasylvester lattice on decreasing trees. It appears in the context of the $m$-Tamari lattices and other related $m$-generalizations. The metasylvester congruence has been recently introduced by Novelli and Thibon. We show that it defines a sublattice of the $m$-permutations where elements can be represented by decreasing labelled trees: the metasylvester lattice. We study the combinatorial properties of this new structure. In particular, we give different realizations of the lattice. The $m$-Tamari lattice is by definition a sublattice of our newly defined metasylvester lattice. It leads us to a new realization of the $m$-Tamari lattice, using certain chains of the classical Tamari lattice. Nous définissons une nouvelle structure combinatoire : le treillis métasylvestre sur les arbres décroissants. Il apparaît dans le contexte des treillis $m$-Tamari et des autres $m$-généralisations. La congruence métasylvestre a été introduite récemment par Novelli et Thibon. Nous montrons qu’elle définit un sous-treillis du treillis sur les $m$-permutations où les éléments sont représentés par des arbres étiquetés décroissants : le treillis métasylvestre. Nous étudions les propriétés combinatoires de ce treillis ainsi que des classes métasylvestres. En particulier, nous en donnons plusieurs réalisations. Le treillis de $m$-Tamari est par définition un sous-treillis du treillis métasylvestre. Cela nous amène à une nouvelle réalisation du treillis de$m$-Tamari par des chaines du treillis de Tamari classiques.


Sign in / Sign up

Export Citation Format

Share Document