scholarly journals Noncrossing Arc Diagrams, Tamari Lattices, and Parabolic Quotients of the Symmetric Group

Author(s):  
Henri Mühle

AbstractOrdering permutations by containment of inversion sets yields a fascinating partial order on the symmetric group: the weak order. This partial order is, among other things, a semidistributive lattice. As a consequence, every permutation has a canonical representation as a join of other permutations. Combinatorially, these canonical join representations can be modeled in terms of arc diagrams. Moreover, these arc diagrams also serve as a model to understand quotient lattices of the weak order. A particularly well-behaved quotient lattice of the weak order is the well-known Tamari lattice, which appears in many seemingly unrelated areas of mathematics. The arc diagrams representing the members of the Tamari lattices are better known as noncrossing partitions. Recently, the Tamari lattices were generalized to parabolic quotients of the symmetric group. In this article, we undertake a structural investigation of these parabolic Tamari lattices, and explain how modified arc diagrams aid the understanding of these lattices.

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

International audience We present a generalization of the Tamari lattice to parabolic quotients of the symmetric group. More precisely, we generalize the notions of 231-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients, and show bijectively that these sets are equinumerous. Furthermore, the restriction of weak order on the parabolic quotient to the parabolic 231-avoiding permutations is a lattice quotient. Lastly, we suggest how to extend these constructions to all Coxeter groups. Nous présentons une généralisation du treillis de Tamari aux quotients paraboliques du groupe symétrique. Plus précisément, nous généralisons les notions de permutations qui évitent le motif 231, les partitions non-croisées, et les partitions non-emboîtées aux quotients paraboliques, et nous montrons de façon bijective que ces ensembles sont équipotents. En restreignant l’ordre faible du quotient parabolique aux permutations paraboliques qui évitent le motif 231, on obtient un quotient de treillis d’ordre faible. Enfin, nous suggérons comment étendre ces constructions à tous les groupes de Coxeter.


10.37236/9982 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Antoine Abram ◽  
Nathan Chapelier-Laget ◽  
Christophe Reutenauer

Motivated by the study of affine Weyl groups, a ranked poset structure is defined on the set of circular permutations in $S_n$ (that is, $n$-cycles). It is isomorphic to the poset of so-called admitted vectors, and to an interval in the affine symmetric group $\tilde S_n$ with the weak order. The poset is a semidistributive lattice, and the rank function, whose range is cubic in $n$, is computed by some special formula involving inversions. We prove also some links with Eulerian numbers, triangulations of an $n$-gon, and Young's lattice.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Sebastian A. Csar ◽  
Rik Sengupta ◽  
Warut Suksompong

International audience We discuss some properties of a subposet of the Tamari lattice introduced by Pallo (1986), which we call the comb poset. We show that three binary functions that are not well-behaved in the Tamari lattice are remarkably well-behaved within an interval of the comb poset: rotation distance, meets and joins, and the common parse words function for a pair of trees. We relate this poset to a partial order on the symmetric group studied by Edelman (1989). Nous discutons d'un subposet du treillis de Tamari introduit par Pallo. Nous appellons ce poset le comb poset. Nous montrons que trois fonctions binaires qui ne se comptent pas bien dans le trellis de Tamari se comptent bien dans un intervalle du comb poset : distance dans le trellis de Tamari, le supremum et l'infimum et les parsewords communs. De plus, nous discutons un rapport entre ce poset et un ordre partiel dans le groupe symétrique étudié par Edelman.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Louis-François Préville-Ratelle ◽  
Xavier Viennot

International audience For any finite path $v$ on the square lattice consisting of north and east unit steps, we construct a poset Tam$(v)$ that consists of all the paths lying weakly above $v$ with the same endpoints as $v$. For particular choices of $v$, we recover the traditional Tamari lattice and the $m$-Tamari lattice. In particular this solves the problem of extending the $m$-Tamari lattice to any pair $(a; b)$ of relatively prime numbers in the context of the so-called rational Catalan combinatorics.For that purpose we introduce the notion of canopy of a binary tree and explicit a bijection between pairs $(u; v)$ of paths in Tam$(v)$ and binary trees with canopy $v$. Let $(\overleftarrow{v})$ be the path obtained from $v$ by reading the unit steps of $v$ in reverse order and exchanging east and north steps. We show that the poset Tam$(v)$ is isomorphic to the dual of the poset Tam$(\overleftarrow{v})$ and that Tam$(v)$ is isomorphic to the set of binary trees having the canopy $v$, which is an interval of the ordinary Tamari lattice. Thus the usual Tamari lattice is partitioned into (smaller) lattices Tam$(v)$, where the $v$’s are all the paths of length $n-1$ on the square lattice.We explain possible connections between the poset Tam$(v)$ and (the combinatorics of) the generalized diagonal coinvariant spaces of the symmetric group. Pour tout chemin $v$ sur le réseau carré formé de pas Nord et Est, nous construisons un ensemble partiellement ordonné Tam $(v)$ dont les éléments sont les chemins au dessus de $v$ et ayant les mêmes extrémités. Pour certains choix de $v$ nous retrouvons le classique treillis de Tamari ainsi que son extension $m$-Tamari. En particulier nous résolvons le problème d’étendre le treillis $m$-Tamari à toute paire $(a; b)$ d’entiers premiers entre eux dans le contexte de la combinatoire rationnelle de Catalan.Pour ceci nous introduisons la notion de canopée d’un arbre binaire et explicitons une bijection entre les paires $(u; v)$ de chemins dans Tam$(v)$ et les arbres binaires ayant la canopée $v$. Soit $(\overleftarrow{v})$ le chemin obtenu en lisant les pas en ordre inverse et en échangeant les pas Est et Nord. Nous montrons que Tam$(v)$ est isomorphe au dual de Tam$(\overleftarrow{v})$ et que Tam$(v)$ est isomorphe à l’ensemble des arbres binaires ayant la canopée $v$, qui est un intervalle du treillis de Tamari ordinaire. Ainsi le traditionnel treillis de Tamari admet une partition en plus petits treillis Tam$(v)$, où les $v$ sont tous les chemins de longueur $n-1$ sur le réseau carré. Enfin nous explicitons les liens possibles entre l’ensemble ordonné Tam$(v)$ et (la combinatoire des) espaces diagonaux coinvariants généralisés du groupe symétrique.


10.37236/7844 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Henri Mühle ◽  
Nathan Williams

We generalize the Tamari lattice by extending the notions of $231$-avoiding permutations, noncrossing set partitions, and nonnesting set partitions to parabolic quotients of the symmetric group $\mathfrak{S}_{n}$.  We show bijectively that these three objects are equinumerous.  We show how to extend these constructions to parabolic quotients of any finite Coxeter group.  The main ingredient is a certain aligned condition of inversion sets; a concept which can in fact be generalized to any reduced expression of any element in any (not necessarily finite) Coxeter group.


10.37236/4000 ◽  
2014 ◽  
Vol 21 (3) ◽  
Author(s):  
Brian Drake

The weak order on the symmetric group is a well-known partial order which is also a lattice. We consider subposets of the weak order consisting of permutations avoiding a single pattern, characterizing the patterns for which the subposet is a lattice. These patterns have only a single small ascent or descent. We prove that all patterns for which the subposet is a sublattice have length at most three.


Author(s):  
Heather M Russell ◽  
Julianna Tymoczko

Abstract Webs are planar graphs with boundary that describe morphisms in a diagrammatic representation category for $\mathfrak{sl}_k$. They are studied extensively by knot theorists because braiding maps provide a categorical way to express link diagrams in terms of webs, producing quantum invariants like the well-known Jones polynomial. One important question in representation theory is to identify the relationships between different bases; coefficients in the change-of-basis matrix often describe combinatorial, algebraic, or geometric quantities (e.g., Kazhdan–Lusztig polynomials). By ”flattening” the braiding maps, webs can also be viewed as the basis elements of a symmetric group representation. In this paper, we define two new combinatorial structures for webs: band diagrams and their one-dimensional projections, shadows, which measure depths of regions inside the web. As an application, we resolve an open conjecture that the change of basis between the so-called Specht basis and web basis of this symmetric group representation is unitriangular for $\mathfrak{sl}_3$-webs ([ 33] and [ 29].) We do this using band diagrams and shadows to construct a new partial order on webs that is a refinement of the usual partial order. In fact, we prove that for $\mathfrak{sl}_2$-webs, our new partial order coincides with the tableau partial order on webs studied by the authors and others [ 12, 17, 29, 33]. We also prove that though the new partial order for $\mathfrak{sl}_3$-webs is a refinement of the previously studied tableau order, the two partial orders do not agree for $\mathfrak{sl}_3$.


2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Wenjie Fang ◽  
Henri Mühle ◽  
Jean-Christophe Novelli

In this article we define an encoding for parabolic permutations that distinguishes between parabolic $231$-avoiding permutations. We prove that the componentwise order on these codes realizes the parabolic Tamari lattice, and conclude a direct and simple proof that the parabolic Tamari lattice is isomorphic to a certain $\nu$-Tamari lattice, with an explicit bijection. Furthermore, we prove that this bijection is closely related to the map $\Theta$ used when the lattice isomorphism was first proved in (Ceballos, Fang and Mühle, 2020), settling an open problem therein.


Sign in / Sign up

Export Citation Format

Share Document