immersion and invariance
Recently Published Documents


TOTAL DOCUMENTS

210
(FIVE YEARS 62)

H-INDEX

17
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Qi Han ◽  
Xiangbin Liu ◽  
Zhitao Liu ◽  
Hongye Su

Abstract Two adaptive control strategies are presented in this paper for two types of quadrotors to cope with potential uncertainties and faults in the actuator system. The four actuators of the considered quadrotors are distinct and suffered from loss of effectiveness (LOE) as well. To accomandate unknown actuator parameters, a filter-based immersion and invariance (I&I) adaptive controllers are designed for attitude and altitude subsystems, respectively, and an integral backstepping controller is developed for the horizontal subsystem to achieve null steady-state error. Both simulation and experiment results are carried out to illustrate the effectiveness of trajectory tracking performance and fault-tolerant accomondation ability of the proposed control schemes.


2021 ◽  
Vol 18 (5) ◽  
pp. 172988142110449
Author(s):  
Yu Liu ◽  
Qingling Zhu ◽  
Guoxin Zhao ◽  
Shuchao Ma

Multidimensional force loading has been widely used in the fields of component and material testing. The pneumatic-driven multidimensional force loading parallel mechanism can meet the requirements of complex force loading. A three-dimensional loading robot based on a pneumatic three-universal–prismatic–universal parallel mechanism is designed to apply time-varying three-dimensional loads on a target. Based on the principle of vector superposition, inverse and forward kinematics are deduced. A second-order mathematical model of a metal seal pneumatic cylinder driven by a flow proportional valve is established. Based on the immersion and invariance technique, the leakage flow in the cylinder is taken as the interference term and estimated. Meanwhile, because of the strong nonlinearity of the actuator, based on suitable disturbance estimation, the control rate of the system is designed through the sliding mode surface, and the stability of the control algorithm is analyzed on the basis of the Lyapunov stability theory. The experimental results show that the immersion and invariance controller exhibits a better control performance than the proportional–integral–differential controller: the steady-state control mean square error is reduced by approximately 21% on average and the dynamic (0.2 Hz) tracking mean square error is approximately 10.35 N.


Sign in / Sign up

Export Citation Format

Share Document