superconducting coil
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 37)

H-INDEX

19
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6319
Author(s):  
Mohamed I. Mosaad ◽  
Ahmed Abu-Siada ◽  
Mohamed M. Ismaiel ◽  
Hani Albalawi ◽  
Ahmed Fahmy

With the increase in doubly fed induction generator-based wind energy conversion systems (DFIG-WECS) worldwide, improving the fault ride-through (FRT) capability of the entire system has been given much attention. Enhancement of the FRT capability of a DFIG-WECS is conventionally realized by employing a flexible AC transmission system device with a proper control system. This paper presents a non-conventional method for the improvement of the FRT of DFIG-WECS, using a high-temperature superconducting coil interfaced with the DC-link of the rotor and stator side converters through a DC-chopper. A fractional-order proportional-integral (FOPI) controller is utilized to regulate the DC-chopper duty cycle in order to properly manage the power flow between the DC-link and the coil. Two optimization techniques, Harmony Search and Grey Wolf Optimizer, are employed to determine the optimum size of the superconducting coil along with the optimum parameters of the FOPI controller. The effectiveness of the two proposed optimization techniques is highlighted through comparing their performance with the well-known particle swarm optimization technique.


2021 ◽  
Author(s):  
Zhenan Jiang ◽  
Christopher Bumby ◽  
Rodney Badcock ◽  
HJ Sung ◽  
RA Slade

High-temperature superconductor (HTS) flux pumps enable large currents to be injected into a superconducting coil without requiring normal-conducting current leads. We present results from an experimental axial-type HTS rotating flux pump that employs a ferromagnetic circuit to focus incident flux upon a coated-conductor stator wire. We show that this device can inject currents of > 50 A into an HTS coil at 77 K and is capable of operating at flux gaps greater than 18 mm. Accommodating a cryostat wall within this flux gap will enable future flux pump designs, in which all moving parts are located outside the cryostat. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


2021 ◽  
Author(s):  
Zhenan Jiang ◽  
Christopher Bumby ◽  
Rodney Badcock ◽  
HJ Sung ◽  
RA Slade

High-temperature superconductor (HTS) flux pumps enable large currents to be injected into a superconducting coil without requiring normal-conducting current leads. We present results from an experimental axial-type HTS rotating flux pump that employs a ferromagnetic circuit to focus incident flux upon a coated-conductor stator wire. We show that this device can inject currents of > 50 A into an HTS coil at 77 K and is capable of operating at flux gaps greater than 18 mm. Accommodating a cryostat wall within this flux gap will enable future flux pump designs, in which all moving parts are located outside the cryostat. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


Author(s):  
Andy Gavrilin ◽  
Dylan J Kolb-Bond ◽  
Kwang Lok Kim ◽  
Kwangmin Kim ◽  
William Scott Marshall ◽  
...  

2021 ◽  
Vol 31 (1) ◽  
pp. 1-8
Author(s):  
Jing Zhang ◽  
Shaotao Dai ◽  
Tao Ma ◽  
Ying Xu ◽  
Xufeng Yan

Author(s):  
Yingzhen Liu ◽  
Jing Ou ◽  
Roland Gyuráki ◽  
Fabian Schreiner ◽  
Wescley Tiago Batista de Sousa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document