dendrite trunk
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 1033 ◽  
pp. 31-39
Author(s):  
Zhi Guo Gao

Multicomponent dendrite growth is theoretically predicted to optimize solidification cracking susceptibility during ternary Ni-Cr-Al nickel-based single-crystal superalloy weld pool solidification. The distribution of dendrite trunk spacing along the weld pool solidification interface is clearly symmetrical about the weld pool centerline in beneficial (001)/[100] welding configuration. The distribution of dendrite trunk spacing along the weld pool solidification interface is crystallography-dependent asymmetrical from bottom to top surface of the weld pool in detrimental (001)/[110] welding configuration. The smaller heat input is used, the finer dendrite trunk spacing is kinetically promoted by less solute enrichment and narrower constitutional undercooling ahead of solid/liquid interface with mitigation of metallurgical contributing factors for solidification cracking and vice versa. Vulnerable [100] dendrite growth region is predominantly suppressed and epitaxial [001] dendrite growth region is favored to spontaneously facilitate single-crystal columnar dendrite growth and reduce microstructure anomalies with further reduction of heat input. Optimum low heat input (both lower laser power and higher welding speed) with (001)/[100] welding configuration is the most favorable one to avoid nucleation and growth of stray grain formation, minimize both dendrite trunk spacing and solidification cracking susceptibility potential, improve resistance to solidification cracking, and ameliorate weldability and weld integrity through microstructure modification instead of inappropriate high heat input (both higher laser power and slower welding speed) with (001)/[110] welding configuration. The dendrite trunk spacing in the [100] dendrite growth region on the right side of the weld pool is considerably coarser and grows faster than that within the [010] dendrite growth region of the left side in the (001)/[110] welding configuration to deteriorate weldability, although the welding conditions are the same on the either side. Furthermore, the alternative mechanism of crystallography-dependent solidification cracking as consequence of asymmetrical microstructure development and diffusion-controlled dendrite growth of γ phase is therefore proposed. The theoretical predictions are comparable with experiment results. The reliable model is also useful for welding conditions optimization for crack-free laser processing.


2021 ◽  
Vol 1020 ◽  
pp. 32-40
Author(s):  
Zhi Guo Gao

A thermal metallurgical coupling model was further developed for multicomponent dendrite growth of primary γ gamma phase during laser welding nickel-based single-crystal superalloys. It is indicated that welding configuration has a predominant role on the overall dendrite trunk spacing than heat input throughout the weld pool, and modifies the dendrite growth kinetics. The dendrite trunk spacing in (001) and [100] welding configuration is finer than that of in (001) and [110] welding configuration. In (001) and [100] welding configuration, the bimodal distribution of dendrite trunk spacing is symmetrical about weld pool centerline, the dendrite trunk spacing in [100] growth region near the weld pool center is coarser than [010], [0ī0] and [001] dendrite growth regions. In (001) and [110] welding configuration, the distribution of dendrite trunk spacing is crystallographically asymmetrical, and the dendrite trunk spacing in [100] growth region is severely coarser than that of [010] and [001] dendrite growth regions. (001) and [110] welding configuration is of particular interest, because dendrite trunk spacing decreases in [100] dendrite growth region and dendrite trunk spacing increases in [010] dendrite growth region from the maximum weld pool width to the end due to crystallography-dependent growth kinetics. Moreover, strict control of low heat input (low laser power and high welding speed) beneficially promotes fine dendrite trunk spacing and reduces the size of dendrite growth regions. High heat input (high laser power and low welding speed) monotonically coarsens dendrite trunk spacing. The dendrite trunk spacing is refined and [100] dendrite growth is suppressed by the optimum low heat input and (001) and [100] welding configuration to improve weldability. An alternative mechanism of solidification cracking because of asymmetrical dendrite trunk growth is proposed. The useful results facilitate understanding of single-crystal superalloys microstructure development and solidification cracking phenomena. The theoretical predictions agree well with the experiment results. Moreover, the model is also applicable to other single-crystal superalloys with similar metallurgical properties by feasible laser welding or laser cladding.


Sign in / Sign up

Export Citation Format

Share Document