stray grain
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 19)

H-INDEX

13
(FIVE YEARS 3)

China Foundry ◽  
2021 ◽  
Vol 18 (5) ◽  
pp. 433-441
Author(s):  
Zhe-feng Liu ◽  
Kai Miao ◽  
Wei-bo Lian ◽  
Zhong-liang Lu ◽  
Chen Yi ◽  
...  

China Foundry ◽  
2021 ◽  
Vol 18 (5) ◽  
pp. 442-449
Author(s):  
Zhen-yu Yang ◽  
Chen-guang Liu ◽  
Song-song Hu ◽  
Su-jie Zheng ◽  
Yu-shi Luo ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1041 ◽  
pp. 47-56
Author(s):  
Zhi Guo Gao

The contribution of crystallography-dependent metallurgical factors, such as supersaturation of liquid aluminum and minimum dendrite tip undercooling, to solidification behavior and microstructure development is numerically analyzed during Ni-Cr-Al ternary single-crystal superalloy molten pool solidification to better understand thermodynamic and kinetic driving forces behind solidification cracking resistance. The variation of supersaturation of liquid aluminum and minimum dendrite tip undercooling with location of solid/liquid interface is symmetrically consistent in (001)/[100] welding configuration. By comparison, the variation is asymmetrically consistent in (001)/[110] welding configuration. The different distribution is attributed to growth crystallography and dendrite selection. Significant increase of supersaturation of liquid aluminum and dendrite tip undercooling from [010] dendrite growth region to [100] dendrite growth region preferentially aggravates microstructure development as result of nucleation and growth of stray grain formation with the same heat input on each half of the weld pool in (001)/[110] welding configuration. High heat input (both increasing laser power and decreasing welding speed) exacerbates supersaturation of liquid aluminum and dendrite tip undercooling by faster diffusion to incur stray grain formation with severity of contributing thermometallurgical factors for susceptibility to solidification cracking, while low heat input (both decreasing laser power and increasing welding speed) ameliorates microstructure development and increases resistance to solidification cracking. Weld microstructure of optimum welding conditions, such as combination of low heat input and (001)/[100] welding configuration, is less susceptible to solidification cracking to suppress asymmetrical microstructure development and improve weld integrity potential rather than insidious welding conditions, such as combination of high heat input and (001)/[110] welding configuration. Severer supersaturation of liquid aluminum and wider dendrite tip undercooling occur in the [100] dendrite region as consequence of alloying enrichment, while smaller supersaturation of liquid aluminum and narrower dendrite tip undercooling occur in the [001] dendrite region as consequence of alloying depletion to spontaneously facilitate epitaxial growth of single-crystal essential. Symmetrical (001)/[100] welding configuration decreases growth kinetics of dendrite tip with smaller overall supersaturation of liquid aluminum and dendrite tip undercooling than that of asymmetrical (001)/[110] welding configuration regardless of combination of laser power and welding speed. Mitigation of supersaturation of liquid aluminum and dendrite tip undercooling simultaneously alleviate crack-susceptible microstructure development and solidification cracking. Additionally, the appropriate mechanism of solidification cracking resistance improvement through modification of crystallography-dependent supersaturation and undercooling of dendrite tip is proposed. Calculation analyses are sufficiently explained by experiment results in a reasonable way. The additional purpose of this theoretical analysis is to evaluate solidification cracking susceptibility of similar nickel-based or iron-based single-crystal superalloys.


2021 ◽  
Vol 1996 (1) ◽  
pp. 012004
Author(s):  
Zhiguo Gao

Abstract Important metallurgical factors, such as alloying aluminum redistribution, supersaturation and undercooling of dendrite tip around solid/liquid interface, are separately optimized to alleviate stray grain formation and columnar/equiaxed transition (CET) with series of welding conditions and provide a very efficient method for microstructure control through modification of growth kinetics of dendrite tip under nonequilibrium solidification conditions of ternary Ni-Cr-Al molten pool. Asymmetrical (001)/[110] welding configuration is inferior to symmetrical (001)/[100] welding configuration, because overall area-weighted alloying redistribution, supersaturation and undercooling of dendrite tip throughout the solid/liquid interface of weld pool are consistently severer to exacerbate solidification behavior and microstructure development and incur morphology instability of columnar/equiaxed transition. High heat input, such as combination of higher laser power and slower welding speed, monotonically increases aluminum enrichment, supersaturation and undercooling of dendrite tip near solidification interface to simultaneously deteriorate nucleation and growth of stray grain formation and weaken columnar dendrite morphology, while low heat input, such as combination of lower laser power and faster welding speed, decreases solute buildup, relieves supersaturation and beneficially suppresses dendrite tip undercooling to minimize equiaxed dendrite morphology in the crack-susceptible region, and thereby facilitate single-crystal epitaxial growth with decrease of thermo-metallurgical factors for columnar/equiaxed transition in order to provide prerequisite for optimization of welding conditions. Favorable solidification conditions are obtainable with preferential crystallographic orientation to eliminate columnar/equiaxed transition under which the epitaxy of single-crystal metallurgical properties across fusion boundary of substrate is predominantly promoted to essentially reduce stray grain formation in (001)/[100] welding configuration, and is kinetically capable of significant reduction of microstructure anomalies and nonuniform solidification behavior. The useful relationship among welding conditions, alloying aluminum redistribution, supersaturation and undercooling of dendrite tip is properly established within dendrite stability range through thorough analysis. In addition, the validation of theoretical predictions is fairly reasonable by the experiment results. It is worth that the contributions of kinetics-related solidification phenomena with advancement of solid/liquid interface are imposed altogether to understand why stray grain formation occurs on the basis of controlling mechanism of minimum undercooling or minimum velocity by the reproducible methodology procedure.


2021 ◽  
Vol 1996 (1) ◽  
pp. 012003
Author(s):  
Zhiguo Gao

Abstract Location-dependent dendrite tip undercooling is numerically elucidated to predict crystallography-assisted resistance to centerline grain boundary formation and morphology transition of stray grain formation ahead of dendrite tip in the ternary Nickel-Chromium-Aluminum molten pool during course of nonequilibrium solidification for explanation arduous solidification behavior control of microstructure melioration. Heat input is not so salient as welding configuration for auspicious solidification behavior and beneficial microstructure development. Advantageous symmetry of welding configuration efficiently lessens dendrite tip undercooling for prevalent dendrite morphology stability of planar interface with alleviation of columnar/equiaxed transition (CET) phenomenon. The bimodal distribution of undercooling ahead of dendrite tip is symmetrically dominant for (001)/[100] growth crystallography with capability of increasing morphology of interface kinetics for epitaxial growth and guarantees single-crystal potential. Alternatively, the distribution of undercooling ahead of dendrite tip is asymmetrically prevalent for (001)/[110] growth crystallography with inefficiency of nonhomologous solidification behavior for discontinuous intersection of solidification interface. Undercooling ahead of dendrite tip inside [010] growth region is not so wide as inside [100] growth region, where thermometallurgically initiates unstable solidification interface and inferior solidification behavior, with unfavorable crystallography in the case of asymmetrical (001)/[110] welding configuration. The smaller heat input is applied, the narrower undercooling ahead of dendrite tip is acquired to significantly mitigate microstructure anomalies with favorable solidification conditions, meliorate metallurgical properties and potentially improve weldability with viability of epitaxial columnar morphology and vice versa. Optimum heat input, especially low laser power and high welding speed together, is a viable and robust way to limit plethora of undercooling and easily decrease solidification behavior anomalies. When low laser power or rapid welding speed is chosen, low heat input not only lessens [100] dendrite growth region, where is spontaneously vulnerable to columnar/equiaxed transition, as ramification of prominent dendrite tip undercooling, but also metallurgically ameliorates [001] dendrite growth region, where morphologically aids epitaxial growth and activates stable planar interface, with achievable diminution of dendrite tip undercooling. Symmetrical (001)/[100] welding configuration, in which undercooling ahead of dendrite tip is preferably narrower than asymmetrical (001)/[110] welding configuration, is one of the most important ingredient for auspicious control of dendrite tip undercooling, once other welding conditions are similar. The main reason, why welding conditions (both low heat input and (001)/[100] welding configuration) is quite superior to welding conditions (both high heat input and (001)/[110] welding configuration), is attributable to favorable crystallography-dependent thermometallurgical factors to suppress inhomogeneous microstructure as long as solidification conditions within marginal stability range. Satisfying crack-free microstructure development is strongly interdependent on kinetics-related solidification behavior through scrupulous control of dendrite tip undercooling to balance between microstructure amelioration and weld depth requirement. The mechanism of columnar/equiaxed transition elimination, by which kinetic driving forces of abnormal microstructure development within high-undercooling region on either left or right side of weld pool is diminished through challenging method of crystallography-dependent dendrite tip undercooling control, is therefore proposed. Finally, there is reasonable consensus between numerical analysis results and experiment results. The numerical analysis provides credible insight into where is liable to microstructure anomalies and why dendrite tip undercooling suppresses stray grain formation for successful laser surface modification of Ni-based single-crystal superalloy.


2021 ◽  
Vol 1033 ◽  
pp. 31-39
Author(s):  
Zhi Guo Gao

Multicomponent dendrite growth is theoretically predicted to optimize solidification cracking susceptibility during ternary Ni-Cr-Al nickel-based single-crystal superalloy weld pool solidification. The distribution of dendrite trunk spacing along the weld pool solidification interface is clearly symmetrical about the weld pool centerline in beneficial (001)/[100] welding configuration. The distribution of dendrite trunk spacing along the weld pool solidification interface is crystallography-dependent asymmetrical from bottom to top surface of the weld pool in detrimental (001)/[110] welding configuration. The smaller heat input is used, the finer dendrite trunk spacing is kinetically promoted by less solute enrichment and narrower constitutional undercooling ahead of solid/liquid interface with mitigation of metallurgical contributing factors for solidification cracking and vice versa. Vulnerable [100] dendrite growth region is predominantly suppressed and epitaxial [001] dendrite growth region is favored to spontaneously facilitate single-crystal columnar dendrite growth and reduce microstructure anomalies with further reduction of heat input. Optimum low heat input (both lower laser power and higher welding speed) with (001)/[100] welding configuration is the most favorable one to avoid nucleation and growth of stray grain formation, minimize both dendrite trunk spacing and solidification cracking susceptibility potential, improve resistance to solidification cracking, and ameliorate weldability and weld integrity through microstructure modification instead of inappropriate high heat input (both higher laser power and slower welding speed) with (001)/[110] welding configuration. The dendrite trunk spacing in the [100] dendrite growth region on the right side of the weld pool is considerably coarser and grows faster than that within the [010] dendrite growth region of the left side in the (001)/[110] welding configuration to deteriorate weldability, although the welding conditions are the same on the either side. Furthermore, the alternative mechanism of crystallography-dependent solidification cracking as consequence of asymmetrical microstructure development and diffusion-controlled dendrite growth of γ phase is therefore proposed. The theoretical predictions are comparable with experiment results. The reliable model is also useful for welding conditions optimization for crack-free laser processing.


2021 ◽  
Vol 1033 ◽  
pp. 40-48
Author(s):  
Zhi Guo Gao

The solidification temperature range was numerically analyzed to optimize nonequilibrium solidification behavior during ternary Ni-Cr-Al nickel-based single-crystal superalloy weld pool solidification with variation of laser welding conditions (either heat input or welding configuration). The distribution of solidification temperature range along the fusion boundary is beneficially symmetrical about the weld pool centerline in the (001)/[100] welding configuration. The distribution of solidification temperature range along the fusion boundary is detrimentally asymmetrical about the weld pool centerline in the (001)/[110] welding configuration. The stray grain formation and solidification cracking are preferentially confined to [100] dendrite growth region. [001] epitaxial growth region with columnar dendrite morphology is favored at the expense of undesirable [100] growth region with equiaxed dendrite morphology to facilitate essential single-crystal solidification with considerable reduction of heat input. The smaller heat input is used, the narrower solidification temperature range is thermodynamically promoted to reduce nucleation and growth of stray grain formation with decrease of constitutional undercooling ahead of dendrite tip and mitigate thermo-metallurgical factors for morphology instability and microstructure anomalies. Potential low heat input(both decreasing laser power and increasing welding speed) with (001)/[100] welding configuration decreases solidification temperature range to significantly minimize columnar/equiaxed transition (CET) and stray grain formation, and improve resistance to solidification cracking through microstructure control. On both sides of weld pool are imposed by the same heat input, while the solidification temperature range along the fusion boundary inside of [100] dendrite growth region on the right part of the weld pool is spontaneously wider than that of [010] dendrite growth region on the left part to increase solidification cracking susceptibility in the (001)/[110] welding configuration. Furthermore, another mechanism of solidification cracking as consequence of severe solidification behavior and anomalous microstructure with asymmetrical crystallographic orientation is therefore proposed. The theoretical predictions are well verified by experiment results. The useful and satisfactory numerical modeling is also available for other single-crystal superalloys during successful laser repair process without stray grain formation.


Sign in / Sign up

Export Citation Format

Share Document