observational feature
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2010 ◽  
Vol 19 (13) ◽  
pp. 2011-2058 ◽  
Author(s):  
YI-ZHONG FAN ◽  
BING ZHANG ◽  
JIN CHANG

The data collected by ATIC, PPB-BETS, FERMI-LAT and HESS all indicate that there is an electron/positron excess in the cosmic ray energy spectrum above ~100 GeV, although different instrumental teams do not agree on the detailed spectral shape. PAMELA also reported clearly the excessive feature of the fraction of positron above several GeV, but with no excess in antiprotons. Here we review the observational status and theoretical models of this interesting observational feature. We pay special attention to various physical interpretations proposed in the literature, including modified supernova remnant models for the e± background, new astrophysical sources, and new physics (the dark matter models). We suggest that although most models can make a case to interpret the data, with the current observational constraints the dark matter interpretations, especially those invoking annihilation, require much more exotic assumptions than some other astrophysical interpretations. Future observations may present some "smoking-gun" observational tests to differentiate different models and to identify the correct interpretation of the phenomenon.


1989 ◽  
Vol 131 ◽  
pp. 169-169
Author(s):  
Tapan K. Chatterjee ◽  
J. Campos

NGC 6369 is a remarkable object, especially in the light of structure and morphology. We studied this object by taking many red plates (103aE), coupled with red filters (F29), of varying exposures using the Schmidt Telescope of the INAOE. The structure brought out by the analysis of the plates indicate that the object consists of a prolate disk sphaped ring nebula with a central hole and featuring huge plumes emanating out of the ring which engulf an outer envelope having a diameter about twice that of the ring. The striking feature of the plumes is that they emanate almost symmetrically out of the two prolate ends of the ring and curve out almost symmetrically along opposite directions.A comparison of the structures of this object with the temporal evolution of the gas density in the numerical simulations of a purely gaseous self-gravitating polytropic ring is conducted. Features resembling the plumes of this object are found at a certain stage of the simulations. A careful comparison of the observed and computer generated features indicate a marked similarity in the sense that both, the observed and simulated ring appear to be similar to the cross section of a prolate spheroid at the ends of which emanate the plumes. This seems to confirm that the evolution of this object is consistent with its being a planetary nebula having the appearance of a prolate spheroid with a central hole, which is a basic observational feature of most planetary nebulae.


Sign in / Sign up

Export Citation Format

Share Document