probabilistic analysis of algorithms
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2012 ◽  
Vol 49 (2) ◽  
pp. 566-581 ◽  
Author(s):  
Götz Olaf Munsonius

We consider a multivariate distributional recursion of sum type, as arises in the probabilistic analysis of algorithms and random trees. We prove an upper tail bound for the solution using Chernoff's bounding technique by estimating the Laplace transform. The problem is traced back to the corresponding problem for binary search trees by stochastic domination. The result obtained is applied to the internal path length and Wiener index of random b-ary recursive trees with weighted edges and random linear recursive trees. Finally, lower tail bounds for the Wiener index of these trees are given.


2012 ◽  
Vol 49 (02) ◽  
pp. 566-581 ◽  
Author(s):  
Götz Olaf Munsonius

We consider a multivariate distributional recursion of sum type, as arises in the probabilistic analysis of algorithms and random trees. We prove an upper tail bound for the solution using Chernoff's bounding technique by estimating the Laplace transform. The problem is traced back to the corresponding problem for binary search trees by stochastic domination. The result obtained is applied to the internal path length and Wiener index of randomb-ary recursive trees with weighted edges and random linear recursive trees. Finally, lower tail bounds for the Wiener index of these trees are given.


2002 ◽  
Vol 34 (2) ◽  
pp. 441-468 ◽  
Author(s):  
Luc Devroye ◽  
Ralph Neininger

An algorithm is developed for exact simulation from distributions that are defined as fixed points of maps between spaces of probability measures. The fixed points of the class of maps under consideration include examples of limit distributions of random variables studied in the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed points with explicit error bounds are constructed. The sampling algorithm relies on a modified rejection method.


2002 ◽  
Vol 34 (02) ◽  
pp. 441-468 ◽  
Author(s):  
Luc Devroye ◽  
Ralph Neininger

An algorithm is developed for exact simulation from distributions that are defined as fixed points of maps between spaces of probability measures. The fixed points of the class of maps under consideration include examples of limit distributions of random variables studied in the probabilistic analysis of algorithms. Approximating sequences for the densities of the fixed points with explicit error bounds are constructed. The sampling algorithm relies on a modified rejection method.


Sign in / Sign up

Export Citation Format

Share Document