combine solution
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Stephen Thomas Hubbard ◽  
Rajlaxmi Bais

Summary: Worldwide morbidity and mortality associated with Covid-19 are severe and ongoing. The Pfizer-BioNTech vaccine is said to be up to 95% effective against severe disease or death. We were able to demonstrate that an additional 9.8% of COVID-19 vaccine doses could theoretically be given if the residual vaccine within the reconstituted Pfizer vials after six doses are extracted were used. This could be achieved by aseptically combining this excess vaccine from multiple vials to achieve full 0.3ml doses. Methods: An observational study was conducted in April, 2021, at a mass vaccine site run by a community volunteer organization on Bainbridge Island, Washington. We measured the amount of Pfizer-BioNTech COVID-19 vaccine that was left in 172 vials after six doses had been withdrawn per Centers for Disease Control (CDC) protocol. Results: A total of 30.68 ml of leftover vaccine was measured and discarded as medical waste. 1,036 doses were given from these vials. An extra 102 doses theoretically could have been given using the residual vaccine in the vials. This would have resulted in 9.8% additional doses of COVID-19 vaccine without requiring new vials. Conclusion: The ability to combine solution from reconstituted Pfizer vaccine vials to minimize waste and obtain additional doses of vaccine could result in an increase in the number of individuals that could be vaccinated worldwide without additional cost. Further studies to validate our findings are warranted. Clinical trials to study the feasibility, safety and efficacy of protocols using this excess vaccine should be considered.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Neil B. McKeown

This paper focuses on polymers that demonstrate microporosity without possessing a network of covalent bonds—the so-called polymers of intrinsic microporosity (PIM). PIMs combine solution processability and microporosity with structural diversity and have proven utility for making membranes and sensors. After a historical account of the development of PIMs, their synthesis is described along with a comprehensive review of the PIMs that have been prepared to date. The important methods of characterising intrinsic microporosity, such as gas absorption, are outlined and structure-property relationships explained. Finally, the applications of PIMs as sensors and membranes for gas and vapour separations, organic nanofiltration, and pervaporation are described.


Sign in / Sign up

Export Citation Format

Share Document