conjugated circuits
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 0)

Chemistry ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1138-1156
Author(s):  
Wendy Myrvold ◽  
Patrick W. Fowler ◽  
Joseph Clarke

Ring-current maps give a direct pictorial representation of molecular aromaticity. They can be computed at levels ranging from empirical to full ab initio and DFT. For benzenoid hydrocarbons, Hückel–London (HL) theory gives a remarkably good qualitative picture of overall current patterns, and a useful basis for their interpretation. This paper describes an implemention of Aihara’s algorithm for computing HL currents for a benzenoid (for example) by partitioning total current into its constituent cycle currents. The Aihara approach can be used as an alternative way of calculating Hückel–London current maps, but more significantly as a tool for analysing other empirical models of induced current based on conjugated circuits. We outline an application where examination of cycle contributions to HL total current led to a simple graph-theoretical approach for cycle currents, which gives a better approximation to the HL currents for Kekulean benzenoids than any of the existing conjugated-circuit models, and unlike these models it also gives predictions of the HL currents in non-Kekulean benzenoids that are of similar quality.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1308
Author(s):  
Krishnan Balasubramanian

We develop the combinatorics of edge symmetry and edge colorings under the action of the edge group for icosahedral giant fullerenes from C80 to C240. We use computational symmetry techniques that employ Sheehan’s modification of Pόlya’s theorem and the Möbius inversion method together with generalized character cycle indices. These techniques are applied to generate edge group symmetry comprised of induced edge permutations and thus colorings of giant fullerenes under the edge symmetry action for all irreducible representations. We primarily consider high-symmetry icosahedral fullerenes such as C80 with a chamfered dodecahedron structure, icosahedral C180, and C240 with a chamfered truncated icosahedron geometry. These symmetry-based combinatorial techniques enumerate both achiral and chiral edge colorings of such giant fullerenes with or without constraints. Our computed results show that there are several equivalence classes of edge colorings for giant fullerenes, most of which are chiral. The techniques can be applied to superaromaticity, sextet polynomials, the rapid computation of conjugated circuits and resonance energies, chirality measures, etc., through the enumeration of equivalence classes of edge colorings.


2012 ◽  
Vol 33 (11) ◽  
pp. 1111-1122 ◽  
Author(s):  
Milan Randić ◽  
Damir Vukičević ◽  
Alexandru T. Balaban ◽  
Marjan Vračko ◽  
Dejan Plavšić
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document