orthogonal procrustes problem
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 0)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Young Woong Park

We propose a data aggregation-based algorithm with monotonic convergence to a global optimum for a generalized version of the L1-norm error fitting model with an assumption of the fitting function. The proposed algorithm generalizes the recent algorithm in the literature, aggregate and iterative disaggregate (AID), which selectively solves three specific L1-norm error fitting problems. With the proposed algorithm, any L1-norm error fitting model can be solved optimally if it follows the form of the L1-norm error fitting problem and if the fitting function satisfies the assumption. The proposed algorithm can also solve multidimensional fitting problems with arbitrary constraints on the fitting coefficients matrix. The generalized problem includes popular models, such as regression and the orthogonal Procrustes problem. The results of the computational experiment show that the proposed algorithms are faster than the state-of-the-art benchmarks for L1-norm regression subset selection and L1-norm regression over a sphere. Furthermore, the relative performance of the proposed algorithm improves as data size increases.



2020 ◽  
Vol 36 (36) ◽  
pp. 158-168
Author(s):  
Joshua Cape

This note revisits the classical orthogonal Procrustes problem and investigates the norm-dependent geometric behavior underlying Procrustes alignment for subspaces. It presents generic, deterministic bounds quantifying the performance of a specified Procrustes-based choice of subspace alignment. Numerical examples illustrate the theoretical observations and offer additional, empirical findings which are discussed in detail. This note complements recent advances in statistics involving Procrustean matrix perturbation decompositions and eigenvector estimation.



Author(s):  
Jim Lawrence ◽  
Javier Bernal ◽  
Christoph Witzgall

The constrained orthogonal Procrustes problem is the least-squares problem that calls for a rotation matrix that optimally aligns two matrices of the same order. Over past decades, the algorithm of choice for solving this problem has been the Kabsch-Umeyama algorithm which is essentially no more than the computation of the singular value decomposition of a particular matrix. Its justification as presented separately by Kabsch and Umeyama is not totally algebraic as it is based on solving the minimization problem via Lagrange multipliers. In order to provide a more transparent alternative, it is the main purpose of this paper to present a purely algebraic justification of the algorithm through the exclusive use of simple concepts from linear algebra. For the sake of completeness, a proof is also included of the well-known and widely-used fact that the orientation-preserving rigid motion problem, i.e., the least-squares problem that calls for an orientation-preserving rigid motion that optimally aligns two corresponding sets of points in d-dimensional Euclidean space, reduces to the constrained orthogonal Procrustes problem.





2017 ◽  
Vol 61 ◽  
pp. 210-220 ◽  
Author(s):  
Pedro Lourenço ◽  
Bruno J. Guerreiro ◽  
Pedro Batista ◽  
Paulo Oliveira ◽  
Carlos Silvestre


Sign in / Sign up

Export Citation Format

Share Document