interannual standard deviation
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2014 ◽  
Vol 14 (20) ◽  
pp. 11129-11148 ◽  
Author(s):  
M. Schröder ◽  
R. Roca ◽  
L. Picon ◽  
A. Kniffka ◽  
H. Brogniez

Abstract. A new free-tropospheric humidity (FTH) data record is presented. It is based on observations from the Meteosat Visible and Infrared Imager (MVIRI) onboard Meteosat-2–Meteosat-5, as well as Meteosat-7, and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat-8 and Meteosat-9 at the water absorption band near 6.3 μm. The data set is available under clear-sky and low-level cloud conditions. With the extension to SEVIRI observations, the data record covers the period 1983–2009 with a spatial resolution of 0.625° × 0.625° and a temporal resolution of 3 h. The FTH is the mean relative humidity (RH) in a broad layer in the free troposphere. The relation between the observed brightness temperature (BT) and the FTH is well established. Previous retrievals are refined by taking into account the relative humidity Jacobians in the training process of the statistical retrieval. The temporal coverage is extended into the SEVIRI period, the homogenization of the BT record is improved, and the full archive is reprocessed using updated regression coefficients. The FTH estimated from the Meteosat observations is compared to the FTH computed from the RH profiles of the Analyzed RadioSoundings Archive (ARSA). An average relative bias of −3.2% and a relative root-mean-square difference (RMSD) of 16.8% are observed. This relative RMSD agrees with the outcome of an analysis of the total uncertainty of the FTH product. The decadal stability of the FTH data record is 0.5 ± 0.45% per decade. As exemplary applications, the interannual standard deviation, the differences on decadal scales, and the linear trend in the FTH data record and in the frequency of occurrence of FTH < 10% (FTHp10) are analyzed per season. Interannual standard deviation maxima and maxima in absolute decadal differences are featured in gradient areas between dry and wet regions, as well as in areas where FTH reaches minima and FTHp10 reaches maxima. An analysis of the FTH linear trends and of the associated uncertainty estimates is achieved to identify possible problems with the data record. Positive trends in FTHp10 are featured in gradient areas between wet and dry regions, in regions where the FTH is minimum, in regions where FTHp10 is maximum, and in regions where differences between FTHp10 averaged over the 2000s and 1990s are negative. However, these positive trends in FTHp10 are associated with maximum standard deviation and are thus hardly significant. This analysis and intercomparisons with other humidity data records are part of the Global Energy and Water Cycle Experiment (GEWEX) Water Vapor Assessment (G-VAP).


2010 ◽  
Vol 23 (12) ◽  
pp. 3316-3331 ◽  
Author(s):  
Riyu Lu ◽  
Yuanhai Fu

Abstract The authors examine the projected change in interannual variability of East Asian summer precipitation and of dominant monsoonal circulation components in the twenty-first century under scenarios A1B and A2 by analyzing the simulated results of 12 Coupled Model Intercomparison Project phase 3 (CMIP3) coupled models. Interannual standard deviation is used to depict the intensity of interannual variability. An evaluation indicates that these models can reasonably reproduce the essential features of the present-day interannual variability in both East Asian rainfall and the rainfall-related circulations. The models project an enhanced interannual variability of summer rainfall over East Asia in the twenty-first century, under both scenarios A1B and A2. Over the East Asian summer rain belt, 10 of the 12 models under scenario A1B and 9 of the 10 models under scenario A2 show enhanced variability in the twenty-first century relative to the twentieth century. The multimodel ensemble (MME) results in increased ratios of interannual standard deviation of precipitation averaged over this region of about 12% and 19% under scenarios A1B and A2, respectively. Furthermore, it is found that the interannual variability is intensified much more remarkably in comparison with mean precipitation. Two circulation factors, the western North Pacific subtropical high (WNPSH) and East Asian upper-tropospheric jet (EAJ), which are closely related to the interannual variability of East Asian summer rainfall, are also projected by the models to exhibit enhanced interannual variability in the twenty-first century. This provides more evidence for the enhancement of interannual variability in East Asian summer rainfall and implies intensified interannual variability of the whole East Asian summer monsoon system. On the other hand, the relationships of East Asian rainfall with the WNPSH and EAJ do not exhibit clear changes in the twenty-first century under scenarios A1B and A2, and there are great discrepancies in the changes of the relationships among the individual models.


Sign in / Sign up

Export Citation Format

Share Document