manin triple
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 1)

H-INDEX

0
(FIVE YEARS 0)

Author(s):  
Mafoya Landry Dassoundo ◽  
Chengming Bai ◽  
Mahouton Norbert Hounkonnou

We establish a bialgebra theory for anti-flexible algebras in this paper. We introduce the notion of an anti-flexible bialgebra which is equivalent to a Manin triple of anti-flexible algebras. The study of a special case of anti-flexible bialgebras leads to the introduction of anti-flexible Yang–Baxter equation in an anti-flexible algebra which is an analogue of the classical Yang–Baxter equation in a Lie algebra or the associative Yang–Baxter equation in an associative algebra. It is unexpected consequence that both the anti-flexible Yang–Baxter equation and the associative Yang–Baxter equation have the same form. A skew-symmetric solution of anti-flexible Yang–Baxter equation gives an anti-flexible bialgebra. Finally the notions of an [Formula: see text]-operator of an anti-flexible algebra and a pre-anti-flexible algebra are introduced to construct skew-symmetric solutions of anti-flexible Yang–Baxter equation.



2020 ◽  
Vol 35 (30) ◽  
pp. 2050245
Author(s):  
S. G. Rajeev

Arnold showed that the Euler equations of an ideal fluid describe geodesics in the Lie algebra of incompressible vector fields. We will show that helicity induces a splitting of the Lie algebra into two isotropic subspaces, forming a Manin triple. Viewed another way, this shows that there is an infinitesimal quantum group (a.k.a. Lie bi-algebra) underlying classical fluid mechanics.



2019 ◽  
Vol 09 (05) ◽  
pp. 632-640
Author(s):  
进圆 李


Author(s):  
David Berman ◽  
Hugo Garcia-Compean ◽  
Paulius Miškinis ◽  
Miao Li ◽  
Daniele Oriti ◽  
...  
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document