seismic anisotropy
Recently Published Documents


TOTAL DOCUMENTS

1238
(FIVE YEARS 296)

H-INDEX

82
(FIVE YEARS 5)

Tectonics ◽  
2022 ◽  
Author(s):  
Michael G. Frothingham ◽  
Kevin H. Mahan ◽  
Vera. Schulte‐Pelkum ◽  
Jonathan Saul. Caine ◽  
Frederick W. Vollmer

2022 ◽  
pp. 105085
Author(s):  
Sowrav Saikia ◽  
Monika Wadhawan ◽  
Antara Sharma ◽  
Santanu Baruah

2021 ◽  
Author(s):  
◽  
Kenny Graham

<p>This thesis involves the study of crustal seismic anisotropy through shear wave splitting. For the past three decades, shear wave splitting (SWS) measurements from crustal earthquakes have been utilized as a technique to characterize seismic anisotropic structures and to infer in situ crustal properties such as the state of the stress and fracture geometry and density. However, the potential of this technique is yet to be realized in part because measurements on local earthquakes are often controlled and/or affected by physical mechanisms and processes which lead to variations in measurements and make interpretation difficult. Many studies have suggested a variety of physical mechanisms that control and/or affect SWS measurements, but few studies have quantitatively tested these suggestions. This thesis seeks to fill this gap by investigating what controls crustal shear-wave splitting (SWS) measurements using empirical and numerical simulation approaches, with the ultimate aim of improving SWS interpretation. For our empirical approach, we used two case studies to investigate what physical processes control seismic anisotropy in the crust at different scales and tectonic settings. In the numerical simulation test, we simulate the propagation of seismic waves in a variety of scenarios.  We begin by measuring crustal anisotropy via SWS analysis around central New Zealand, where clusters of closely-spaced earthquakes have occurred. We used over 40,000 crustal earthquakes across 36 stations spanning close to 5.5 years between 2013 and 2018 to generate the largest catalog of high-quality SWS measurements (~102,000) around the Marlborough and Wellington region. The size of our SWS catalog allowed us to perform a detailed systematic analysis to investigate the processes that control crustal anisotropy and we also investigated the spatial and temporal variation of the anisotropic structure around the region. We observed a significant spatial variation of SWS measurements in Central New Zealand. We found that the crustal anisotropy around Central New Zealand is confined to the upper few kilometers of the crust, and is controlled by either one mechanism or a combination of more than one (such as structural, tectonic stresses, and gravitational stresses). The high correspondence between the orientation of the maximum horizontal compressive stress calculated from gravitational potential energy from topography and average fast polarization orientation around the Kaikōura region suggests that gravitationally induced stresses control the crustal anisotropy in the Kaikōura region. We suggest that examining the effect of gravitational stresses on crustal seismic anisotropy should not be neglected in future studies. We also observed no significant temporal changes in the state of anisotropy over the 5.5 year period despite the occurrence of significant seismicity.   For the second empirical study, we characterized the anisotropic structure of a fault approaching failure (the Alpine Fault of New Zealand). We performed detailed SWS analysis on local earthquakes that were recorded on a dense array of 159 three-component seismometers with inter-station spacing about 30 m around the Whataroa Valley, New Zealand. The SWS analysis of data from this dense deployment enabled us to map the spatial characteristics of the anisotropic structure and also to investigate the mechanisms that control anisotropy in the Whataroa valley in the vicinity of the Alpine Fault. We observed that the orientation of the fast direction is parallel to the strike of the Alpine Fault trace and the orientations of the regional and borehole foliation planes. We also observed that there was no significant spatial variation of the anisotropic structure as we move across the Alpine Fault trace from the hanging wall to the footwall. We inferred that the geological structures, such as the Alpine Fault fabric and foliations within the valley, are the main mechanisms that control the anisotropic structure in the Whataroa valley.    For our numerical simulation approach, we simulate waveforms propagating through an anisotropic media (using both 1-D and 3-D techniques). We simulate a variety of scenarios, to investigate how some of the suggested physical mechanisms affect SWS measurements. We considered (1) the effect on seismic waves caused by scatterers along the waves' propagation path, (2) the effect of the earthquake source mechanism, (3) the effect of incidence angle of the incoming shear wave. We observed that some of these mechanisms (such as the incidence angle of the incoming shear wave and scatterers) significantly affect SWS measurement while others such as earthquake source mechanisms have less effect on SWS measurements. We also observed that the effect of most of these physical mechanisms depends on the wavelength of the propagating shear wave relative to the size of the features. There is a significant effect on SWS measurements if the size of the physical mechanism (such as scatterers) is comparable to the wavelength of the incoming shear wave. With a larger wavelength, the wave treats the feature as a homogeneous medium.</p>


2021 ◽  
Author(s):  
◽  
Kenny Graham

<p>This thesis involves the study of crustal seismic anisotropy through shear wave splitting. For the past three decades, shear wave splitting (SWS) measurements from crustal earthquakes have been utilized as a technique to characterize seismic anisotropic structures and to infer in situ crustal properties such as the state of the stress and fracture geometry and density. However, the potential of this technique is yet to be realized in part because measurements on local earthquakes are often controlled and/or affected by physical mechanisms and processes which lead to variations in measurements and make interpretation difficult. Many studies have suggested a variety of physical mechanisms that control and/or affect SWS measurements, but few studies have quantitatively tested these suggestions. This thesis seeks to fill this gap by investigating what controls crustal shear-wave splitting (SWS) measurements using empirical and numerical simulation approaches, with the ultimate aim of improving SWS interpretation. For our empirical approach, we used two case studies to investigate what physical processes control seismic anisotropy in the crust at different scales and tectonic settings. In the numerical simulation test, we simulate the propagation of seismic waves in a variety of scenarios.  We begin by measuring crustal anisotropy via SWS analysis around central New Zealand, where clusters of closely-spaced earthquakes have occurred. We used over 40,000 crustal earthquakes across 36 stations spanning close to 5.5 years between 2013 and 2018 to generate the largest catalog of high-quality SWS measurements (~102,000) around the Marlborough and Wellington region. The size of our SWS catalog allowed us to perform a detailed systematic analysis to investigate the processes that control crustal anisotropy and we also investigated the spatial and temporal variation of the anisotropic structure around the region. We observed a significant spatial variation of SWS measurements in Central New Zealand. We found that the crustal anisotropy around Central New Zealand is confined to the upper few kilometers of the crust, and is controlled by either one mechanism or a combination of more than one (such as structural, tectonic stresses, and gravitational stresses). The high correspondence between the orientation of the maximum horizontal compressive stress calculated from gravitational potential energy from topography and average fast polarization orientation around the Kaikōura region suggests that gravitationally induced stresses control the crustal anisotropy in the Kaikōura region. We suggest that examining the effect of gravitational stresses on crustal seismic anisotropy should not be neglected in future studies. We also observed no significant temporal changes in the state of anisotropy over the 5.5 year period despite the occurrence of significant seismicity.   For the second empirical study, we characterized the anisotropic structure of a fault approaching failure (the Alpine Fault of New Zealand). We performed detailed SWS analysis on local earthquakes that were recorded on a dense array of 159 three-component seismometers with inter-station spacing about 30 m around the Whataroa Valley, New Zealand. The SWS analysis of data from this dense deployment enabled us to map the spatial characteristics of the anisotropic structure and also to investigate the mechanisms that control anisotropy in the Whataroa valley in the vicinity of the Alpine Fault. We observed that the orientation of the fast direction is parallel to the strike of the Alpine Fault trace and the orientations of the regional and borehole foliation planes. We also observed that there was no significant spatial variation of the anisotropic structure as we move across the Alpine Fault trace from the hanging wall to the footwall. We inferred that the geological structures, such as the Alpine Fault fabric and foliations within the valley, are the main mechanisms that control the anisotropic structure in the Whataroa valley.    For our numerical simulation approach, we simulate waveforms propagating through an anisotropic media (using both 1-D and 3-D techniques). We simulate a variety of scenarios, to investigate how some of the suggested physical mechanisms affect SWS measurements. We considered (1) the effect on seismic waves caused by scatterers along the waves' propagation path, (2) the effect of the earthquake source mechanism, (3) the effect of incidence angle of the incoming shear wave. We observed that some of these mechanisms (such as the incidence angle of the incoming shear wave and scatterers) significantly affect SWS measurement while others such as earthquake source mechanisms have less effect on SWS measurements. We also observed that the effect of most of these physical mechanisms depends on the wavelength of the propagating shear wave relative to the size of the features. There is a significant effect on SWS measurements if the size of the physical mechanism (such as scatterers) is comparable to the wavelength of the incoming shear wave. With a larger wavelength, the wave treats the feature as a homogeneous medium.</p>


2021 ◽  
Author(s):  
Tongcui Guo ◽  
Guihai Wang ◽  
Xinmin Song ◽  
Dongbo He ◽  
Jian Zhang ◽  
...  

Abstract Fractures in carbonate rock are both storing reservoirs and migrating channels for oil and gas, so such fractures are one of the key targets for oil exploration and development. Traditional fracture prediction methods by seismic data include ant tracking cube, coherence cube and other seismic attributes. Fractures predicted by these methods are less accurate. This paper introduces a wide-azimuth anisotropic inversion method to effectively predict the fracture density and direction in carbonates. a wide-azimuth seismic anisotropy inversion workflow is established to predict the fractures in carbonates, and consequently the fractured zones in the target layer. The key steps include: (1) carry out quality control and optimization of wide-azimuth seismic gathers; (2) conduct pre-stack simultaneous inversion of pre-stack seismic data at partial sub-offsets and sub-azimuths to obtain the Vp/Vs of the azimuths; (3) use Azimuthal Fourier Coefficient to calculate the anisotropic gradient and direction. Based on the anisotropic intensity and direction and elastic parameters in the study area, the density and direction of fractures are obtained. The prediction results show that in the study area, nearly SN-striking fractures are developed, which are chiefly tectonic fractures, and consistent with the imaging logging results. It has been proved that the method is reasonable and feasible, and the accuracy of fracture prediction is improved.


2021 ◽  
Author(s):  
◽  
Stefan Mroczek

<p>In order to investigate the cracks/fractures in the geothermal fields of Rotokawa and Ngatamariki, we measure seismic anisotropy across both fields and interpret the results in the context of stress aligned microcracks. Cracks aligned perpendicular to the direction of maximum horizontal stress close and their fluid is forced into cracks aligned with maximum horizontal stress (SHmax). Seismic anisotropy is the directional dependence of a seismic wave's velocity and provides a measure of crack orientation and density.  To measure seismic anisotropy we conduct shear wave splitting measurements on 52,000 station-earthquake pairs across both Rotokawa and Ngatamariki from earthquakes recorded during 2015. Both fields are the subject of other geophysical and geological studies. Thus they are excellent subjects for studying seismic anisotropy. We cluster our measurements by their station-event path and fit the parameters from these clusters to those from theoretical crack planes. We also apply 2-D tomography to shear wave splitting time delays (𝛿t) and spatial averaging to shear wave splitting fast polarisations (∅). In addition, we compare time delays with P-wave to S-wave velocity ratios (νP / vS).  Local measurements of stress within Rotokawa and regional measures of stress within the Taupo Volcanic Zone provide a comparison for the shear wave splitting measurements. We measure ∅ which agrees with the NE-SW regional direction of SHmax across Ngatamariki and parts of Rotokawa. Within Rotokawa, we observe a rotation of ∅ away from NE-SW toward N-S that agrees with borehole measurements of direction of SHmax of 023° and 030°. Spatial averaging of ∅ reveals mean orientations close to the strike of nearby active faults.  The theoretical crack planes, that fit best to the shear wave splitting measurements, correspond to aligned cracks striking 045° outside of both fields, 035° within Ngatamariki, and 035° through to 0° within Rotokawa.  The average percent anisotropy for the full dataset, approximately 4%, is close to the upper bound for an intact rock. Delay time tomography shows regions of higher delay time per kilometre of path length (s=km) within both fields and possibly associated with the production field fault in Rotokawa.  vP =vS shows a wide range of normally distributed values, from 1.1 through to 2.4 with a mean of 1.6, indicating a mixture of gas filled and saturated cracks. A positive correlation between delay time per kilometre (𝛿tpkm) and νP /νS indicates that the majority of the cracks are saturated.</p>


Sign in / Sign up

Export Citation Format

Share Document