synfire chain
Recently Published Documents


TOTAL DOCUMENTS

18
(FIVE YEARS 2)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Wilten Nicola ◽  
Claudia Clopath ◽  
Thomas Robert Newton

Precise and reliable spike times are thought to subserve multiple possible functions, including improving the accuracy of encoding stimuli or behaviours relative to other coding schemes. Indeed, repeating sequences of spikes with sub-millisecond precision exist in nature, such as the synfire chain of spikes in area HVC of the zebra-finch mating-song circuit. Here, we analyzed what impact precise and reliable spikes have on the encoding accuracy for both the zebra-finch and more generic neural circuits using computational modelling. Our results show that neural circuits can use precisely timed spikes to encode signals with a higher-order accuracy than a conventional rate code. Circuits with precisely timed and reliably emitted spikes increase their encoding accuracy linearly with network size, which is the hallmark signature of an efficient code. This qualitatively differs from circuits that employ a rate code which increase their encoding accuracy with the square-root of network size. However, this improved scaling is dependent on the spikes becoming more accurate and more reliable with larger networks. Finally, we discuss how to test this scaling relationship in the zebra mating song circuit using both neural data and song-spectrogram-based recordings while taking advantage of the natural fluctuation in HVC network size due to neurogenesis. The zebra-finch mating-song circuit may represent the most likely candidate system for the use of spike-timing-based, efficient coding strategies in nature.


2020 ◽  
Author(s):  
Dina Obeid ◽  
Jacob A. Zavatone-Veth ◽  
Cengiz Pehlevan

Timing and its variability are crucial for behavior. Consequently, neural circuits that take part in the control of timing and in the measurement of temporal intervals have been the subject of much research. Here, we provide an analytical and computational account of the temporal variability in what is perhaps the most basic model of a timing circuit, the synfire chain. First, we study the statistical structure of trial-to-trial timing variability in a reduced but analytically tractable model: a chain of single integrate-and-fire neurons. We show that this circuit’s variability is well-described by a generative model consisting of local, global, and jitter components. We relate each of these components to distinct neural mechanisms in the model. Next, we establish in simulations that these results carry over to a noisy homogeneous synfire chain. Finally, motivated by the fact that a synfire chain is thought to underlie the circuit that takes part in the control and timing of zebra finch song, we present simulations of a biologically realistic synfire chain model of the zebra finch timekeeping circuit. We find the structure of trial-to-trial timing variability to be consistent with our previous findings, and to agree with experimental observations of the song’s temporal variability. Our study therefore provides a possible neuronal account of behavioral variability in zebra finches.


2017 ◽  
Vol 482 ◽  
pp. 308-316 ◽  
Author(s):  
Xinmeng Guo ◽  
Haitao Yu ◽  
Jiang Wang ◽  
Jing Liu ◽  
Yibin Cao ◽  
...  

2008 ◽  
Vol 100 (4) ◽  
pp. 2165-2176 ◽  
Author(s):  
Sven Schrader ◽  
Sonja Grün ◽  
Markus Diesmann ◽  
George L. Gerstein

The synfire chain model has been proposed as the substrate that underlies computational processes in the brain and has received extensive theoretical study. In this model cortical tissue is composed of a superposition of feedforward subnetworks (chains) each capable of transmitting packets of synchronized spikes with high reliability. Computations are then carried out by interactions of these chains. Experimental evidence for synfire chains has so far been limited to inference from detection of a few repeating spatiotemporal neuronal firing patterns in multiple single-unit recordings. Demonstration that such patterns actually come from synfire activity would require finding a meta organization among many detected patterns, as yet an untried approach. In contrast we present here a new method that directly visualizes the repetitive occurrence of synfire activity even in very large data sets of multiple single-unit recordings. We achieve reliability and sensitivity by appropriately averaging over neuron space (identities) and time. We test the method with data from a large-scale balanced recurrent network simulation containing 50 randomly activated synfire chains. The sensitivity is high enough to detect synfire chain activity in simultaneous single-unit recordings of 100 to 200 neurons from such data, enabling application to experimental data in the near future.


2008 ◽  
Vol 9 (S1) ◽  
Author(s):  
Christopher M Glaze ◽  
Todd W Troyer

2007 ◽  
Vol 19 (9) ◽  
pp. 2468-2491 ◽  
Author(s):  
Kosuke Hamaguchi ◽  
Masato Okada ◽  
Kazuyuki Aihara

Repetitions of precise spike patterns observed both in vivo and in vitro have been reported for more than a decade. Studies on the spike volley (a pulse packet) propagating through a homogeneous feedforward network have demonstrated its capability of generating spike patterns with millisecond fidelity. This model is called the synfire chain and suggests a possible mechanism for generating repeated spike patterns (RSPs). The propagation speed of the pulse packet determines the temporal property of RSPs. However, the relationship between propagation speed and network structure is not well understood. We studied a feedforward network with Mexican-hat connectivity by using the leaky integrate-and-fire neuron model and analyzed the network dynamics with the Fokker-Planck equation. We examined the effect of the spatial pattern of pulse packets on RSPs in the network with multistability. Pulse packets can take spatially uniform or localized shapes in a multistable regime, and they propagate with different speeds. These distinct pulse packets generate RSPs with different timescales, but the order of spikes and the ratios between interspike intervals are preserved. This result indicates that the RSPs can be transformed into the same template pattern through the expanding or contracting operation of the timescale.


2007 ◽  
Vol 76 (4) ◽  
pp. 044806 ◽  
Author(s):  
Takashi Shinozaki ◽  
Hideyuki Câteau ◽  
Hidetoshi Urakubo ◽  
Masato Okada

Sign in / Sign up

Export Citation Format

Share Document