torsion potential
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Simon Boothroyd ◽  
Hyesu Jang ◽  
Jeffrey Wagner ◽  
...  

We describe the structure and optimization of the Open Force Field 1.0.0 small molecule force field, code-named Parsley. Parsley uses the SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism in which parameter types are assigned directly by chemical perception, in contrast to traditional atom type-based approaches. This method provides a natural means to incorporate increasingly diverse chemistry without needlessly increasing force field complexity. In this work, we present essentially a full optimization of the valence parameters in the force field. The optimization was carried out with the ForceBalance tool and was informed by reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These data were computed and are maintained with QCArchive, an open-source and freely available distributed computing and database software ecosystem. Tests of the resulting force field against compounds and data types outside the training set show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields. <br>


2020 ◽  
Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Simon Boothroyd ◽  
Hyesu Jang ◽  
Jeffrey Wagner ◽  
...  

We describe the structure and optimization of the Open Force Field 1.0.0 small molecule force field, code-named Parsley. Parsley uses the SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism in which parameter types are assigned directly by chemical perception, in contrast to traditional atom type-based approaches. This method provides a natural means to incorporate increasingly diverse chemistry without needlessly increasing force field complexity. In this work, we present essentially a full optimization of the valence parameters in the force field. The optimization was carried out with the ForceBalance tool and was informed by reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These data were computed and are maintained with QCArchive, an open-source and freely available distributed computing and database software ecosystem. Tests of the resulting force field against compounds and data types outside the training set show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields. <br>


2020 ◽  
Author(s):  
Yudong Qiu ◽  
Daniel Smith ◽  
Simon Boothroyd ◽  
Hyesu Jang ◽  
Jeffrey Wagner ◽  
...  

We describe the structure and optimization of the Open Force Field 1.0.0 small molecule force field, code-named Parsley. Parsley uses the SMIRKS-native Open Force Field (SMIRNOFF) parameter assignment formalism in which parameter types are assigned directly by chemical perception, in contrast to traditional atom type-based approaches. This method provides a natural means to incorporate increasingly diverse chemistry without needlessly increasing force field complexity. In this work, we present essentially a full optimization of the valence parameters in the force field. The optimization was carried out with the ForceBalance tool and was informed by reference quantum chemical data that include torsion potential energy profiles, optimized gas-phase structures, and vibrational frequencies. These data were computed and are maintained with QCArchive, an open-source and freely available distributed computing and database software ecosystem. Tests of the resulting force field against compounds and data types outside the training set show improvements in optimized geometries and conformational energetics and demonstrate that Parsley's accuracy for liquid properties is similar to that of other general force fields. <br>


2015 ◽  
Vol 17 (47) ◽  
pp. 31693-31706 ◽  
Author(s):  
Peiyuan Gao ◽  
Hongxia Guo

The CG torsion potential has a dual effect on the reproduction of crystallization of trans-1,4-polybutadiene in CG simulation.


2014 ◽  
Vol 13 (04) ◽  
pp. 1450026 ◽  
Author(s):  
Lirong Mou ◽  
Xiangyu Jia ◽  
Ya Gao ◽  
Yongxiu Li ◽  
John Z. H. Zhang ◽  
...  

A newly developed AMBER compatible force field with coupled backbone torsion potential terms (AMBER032D) is utilized in a folding simulation of a mini-protein Trp-cage. Through replica exchange and direct molecular dynamics (MD) simulations, a multi-step folding mechanism with a synergetic folding of the hydrophobic core (HPC) and the α-helix in the final stage is suggested. The native structure has the lowest free energy and the melting temperature predicted from the specific heat capacity Cvis only 12 K higher than the experimental measurement. This study, together with our previous study, shows that AMBER032Dis an accurate force field that can be used for protein folding simulations.


2013 ◽  
Vol 561 ◽  
pp. 164-168
Author(s):  
Lian Xiang Ma ◽  
Gang Yang ◽  
Yuan Zheng Tang ◽  
Yan He

In this article, thermal conductivity of EPDM networks has been discussed using molecular dynamics simulations. The simulations are performed on four systems using adaptive intermolecular reactive empirical bond order (AIREBO) potential. The effect of Lennard-Jones (L-J) potential and torsion potential on thermal conductivity is discussed. The contribution of L-J potential to thermal conductivity is negative. However, contribution of torsion potential is positive. The results suggest that the randomly entanglement of molecular chains in EPDM networks is responsible for its low thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document