energy profiles
Recently Published Documents


TOTAL DOCUMENTS

521
(FIVE YEARS 143)

H-INDEX

42
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Anakuthil Anoop ◽  
Venkataraman Ganesh

The tropylium catalyzed carboxylic acid O-H insertion with diazoesters providing α-hydroxy esters was reported recently through an activated carbene as the key intermediate. We report a revised mechanism involving a unique homoaromatic intermediate with the tropylium ion and the diazoester based on the DFT calculations. Our computational model provides a clear insight into the binding of the tropylium ion with the diazoester providing the homoaromatic intermediate. The reaction profiles of four different pathways were compared. The energies of the intermediates and the transition states are reported at B97-D3(SMD)/def2TZVP//B97-D3/def2TZVP (in dichloromethane). The energy profiles were compared across a few computational methods to study the sensitivity of our model across methods.


2021 ◽  
Author(s):  
Linda X Phan ◽  
Charlotte I Lynch ◽  
Jason Crain ◽  
Mark Sansom ◽  
Stephen J Tucker

Interactions between ions and water at hydrophobic interfaces within ion channels and nanopores are suggested to play a key role in the movement of ions across biological membranes. Previous molecular dynamics (MD) simulations have shown that the affinity of polarizable anions to aqueous/hydrophobic interfaces can be markedly influenced by including polarization effects through an electronic continuum correction (ECC). Here, we designed a model biomimetic nanopore to imitate the polar pore openings and hydrophobic gating regions found in pentameric ligand-gated ion channels. MD simulations were then performed using both a non-polarizable force field and the ECC method to investigate the behavior of water, Na+ and Cl- ions confined within the hydrophobic region of the nanopore. Number density distributions revealed preferential Cl- adsorption to the hydrophobic pore walls, with this interfacial layer largely devoid of Na+. Free energy profiles for Na+ and Cl- permeating the pore also display an energy barrier reduction associated with the localization of Cl- to this hydrophobic interface, and the hydration number profiles reflect a corresponding reduction in the first hydration shell of Cl-. Crucially, these ion effects were only observed through inclusion of effective polarization which therefore suggests that polarizability may be essential for an accurate description for the behavior of ions and water within hydrophobic nanoscale pores, especially those that conduct Cl-.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1343
Author(s):  
Tolga Yaman ◽  
Jeremy N. Harvey

Novel density functional theory calculations are presented regarding a mechanism for prebiotic amino acid synthesis from alpha-keto acids that was suggested to happen via catalysis by dinucleotide species. Our results were analysed with comparison to the original hypothesis (Copley et al., PNAS, 2005, 102, 4442–4447). It was shown that the keto acid–dinucleotide hypothesis for possible prebiotic amino acid synthesis was plausible based on an initial computational analysis, and details of the structures for the intermediates and transition states showed that there was wide scope for interactions between the keto acid and dinucleotide moieties that could affect the free energy profiles and lead to the required proto-metabolic selectivity.


2021 ◽  
Vol 21 (23) ◽  
pp. 17687-17714
Author(s):  
Mária Lbadaoui-Darvas ◽  
Satoshi Takahama ◽  
Athanasios Nenes

Abstract. Liquid–liquid phase-separated (LLPS) aerosol particles are known to exhibit increased cloud condensation nuclei (CCN) activity compared to well-mixed ones due to a complex effect of low surface tension and non-ideal mixing. The relation between the two contributions as well as the molecular-scale mechanism of water uptake in the presence of an internal interface within the particle is to date not fully understood. Here we attempt to gain understanding in these aspects through steered molecular dynamics simulation studies of water uptake by a vapor–hydroxy-cis-pinonic acid–water double interfacial system at 200 and 300 K. Simulated free-energy profiles are used to map the water uptake mechanism and are separated into energetic and entropic contributions to highlight its main thermodynamic driving forces. Atmospheric implications are discussed in terms of gas–particle partitioning, intraparticle water redistribution timescales and water vapor equilibrium saturation ratios. Our simulations reveal a strongly temperature-dependent water uptake mechanism, whose most prominent features are determined by local extrema in conformational and orientational entropies near the organic–water interface. This results in a low core uptake coefficient (ko/w=0.03) and a concentration gradient of water in the organic shell at the higher temperature, while entropic effects are negligible at 200 K due to the association-entropic-term reduction in the free-energy profiles. The concentration gradient, which results from non-ideal mixing – and is a major factor in increasing LLPS CCN activity – is responsible for maintaining liquid–liquid phase separation and low surface tension even at very high relative humidities, thus reducing critical supersaturations. Thermodynamic driving forces are rationalized to be generalizable across different compositions. The conditions under which single uptake coefficients can be used to describe growth kinetics as a function of temperature in LLPS particles are described.


2021 ◽  
Author(s):  
Shuhei Kawamoto ◽  
Huihui Liu ◽  
Sangjae Seo ◽  
Yusuke Miyazaki ◽  
Mayank Dixit ◽  
...  

ABSTRACTA coarse-grained (CG) model for peptides and proteins was developed as an extension of the SPICA (Surface Property fItting Coarse grAined) force field (FF). The model was designed to examine membrane proteins that are fully compatible with the lipid membranes of the SPICA FF. A preliminary version of this protein model was created using thermodynamic properties, including the surface tension and density in the SPICA (formerly called SDK) FF. In this study, we improved the CG protein model to facilitate molecular dynamics (MD) simulation with a reproduction of multiple properties from both experiments and all-atom (AA) simulations. The side chain analogs reproduced the transfer free energy profiles across the lipid membrane and demonstrated reasonable dimerization free energies in water compared to those from AA-MD. A series of peptides/proteins adsorbed or penetrated into the membrane simulated by the CG-MD correctly predicted the penetration depths and tilt angles of peripheral and transmembrane peptides/proteins comparable to those in the orientation of protein in membrane (OPM) database. In addition, the dimerization free energies of several transmembrane helices within a lipid bilayer were comparable to those from experimental estimation. Application studies on a series of membrane protein assemblies, scramblases, and poliovirus capsids demonstrated a good performance of the SPICA FF.


2021 ◽  
Vol 22 (23) ◽  
pp. 13042
Author(s):  
Vladimir Sladek ◽  
Ryuhei Harada ◽  
Yasuteru Shigeta

Recently, we have shown that the residue folding degree, a network-based measure of folded content in proteins, is able to capture backbone conformational transitions related to the formation of secondary structures in molecular dynamics (MD) simulations. In this work, we focus primarily on developing a collective variable (CV) for MD based on this residue-bound parameter to be able to trace the evolution of secondary structure in segments of the protein. We show that this CV can do just that and that the related energy profiles (potentials of mean force, PMF) and transition barriers are comparable to those found by others for particular events in the folding process of the model mini protein Trp-cage. Hence, we conclude that the relative segment folding degree (the newly proposed CV) is a computationally viable option to gain insight into the formation of secondary structures in protein dynamics. We also show that this CV can be directly used as a measure of the amount of α-helical content in a selected segment.


2021 ◽  
Vol 118 (49) ◽  
pp. e2113141118
Author(s):  
Chenghan Li ◽  
Gregory A. Voth

Water-assisted proton transport through confined spaces influences many phenomena in biomolecular and nanomaterial systems. In such cases, the water molecules that fluctuate in the confined pathways provide the environment and the medium for the hydrated excess proton migration via Grotthuss shuttling. However, a definitive collective variable (CV) that accurately couples the hydration and the connectivity of the proton wire with the proton translocation has remained elusive. To address this important challenge—and thus to define a quantitative paradigm for facile proton transport in confined spaces—a CV is derived in this work from graph theory, which is verified to accurately describe water wire formation and breakage coupled to the proton translocation in carbon nanotubes and the Cl−/H+ antiporter protein, ClC-ec1. Significant alterations in the conformations and thermodynamics of water wires are uncovered after introducing an excess proton into them. Large barriers in the proton translocation free-energy profiles are found when water wires are defined to be disconnected according to the new CV, even though the pertinent confined space is still reasonably well hydrated and—by the simple measure of the mere existence of a water structure—the proton transport would have been predicted to be facile via that oversimplified measure. In this paradigm, however, the simple presence of water is not sufficient for inferring proton translocation, since an excess proton itself is able to drive hydration, and additionally, the water molecules themselves must be adequately connected to facilitate any successful proton transport.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 79
Author(s):  
Komal Yadav ◽  
Upakarasamy Lourderaj ◽  
U. Deva Priyakumar

The quest for stabilizing planar forms of tetracoordinate carbon started five decades ago and intends to achieve interconversion between [R]- and [S]-stereoisomers without breaking covalent bonds. Several strategies are successful in making the planar tetracoordinate form a minimum on its potential energy surface. However, the first examples of systems where stereomutation is possible were reported only recently. In this study, the possibility of neutral and dications of simple hydrocarbons (cyclopentane, cyclopentene, spiropentane, and spiropentadiene) and their counterparts with the central carbon atom replaced by elements from groups 13, 14, and 15 are explored using ab initio MP2 calculations. The energy difference between the tetrahedral and planar forms decreases from row II to row III or IV substituents. Additionally, aromaticity involving the delocalization of the lone pair on the central atom appears to help in further stabilizing the planar form compared to the tetrahedral form, especially for the row II substituents. We identified 11 systems where the tetrahedral state is a minimum on the potential energy surface, and the planar form is a transition state corresponding to stereomutation. Interestingly, the planar structures of three systems were found to be minimum, and the corresponding tetrahedral states were transition states. The energy profiles corresponding to such transitions involving both planar and tetrahedral states without the breaking of covalent bonds were examined. The systems showcased in this study and research in this direction are expected to realize molecules that experimentally exhibit stereomutation.


Sign in / Sign up

Export Citation Format

Share Document