muskat problem
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 0)



Author(s):  
Jonas Bierler ◽  
Bogdan-Vasile Matioc


2021 ◽  
Author(s):  
Ke Chen ◽  
Quoc-Hung Nguyen ◽  
Yiran Xu
Keyword(s):  


Author(s):  
Anca-Voichita Matioc ◽  
Bogdan-Vasile Matioc

AbstractIn this paper we establish the well-posedness of the Muskat problem with surface tension and equal viscosities in the subcritical Sobolev spaces $$W^s_p(\mathbb {R})$$ W p s ( R ) , where $${p\in (1,2]}$$ p ∈ ( 1 , 2 ] and $${s\in (1+1/p,2)}$$ s ∈ ( 1 + 1 / p , 2 ) . This is achieved by showing that the mathematical model can be formulated as a quasilinear parabolic evolution problem in $$W^{\overline{s}-2}_p(\mathbb {R})$$ W p s ¯ - 2 ( R ) , where $${\overline{s}\in (1+1/p,s)}$$ s ¯ ∈ ( 1 + 1 / p , s ) . Moreover, we prove that the solutions become instantly smooth and we provide a criterion for the global existence of solutions.





Author(s):  
H. ABELS ◽  
B.-V. MATIOC

We study the Muskat problem describing the vertical motion of two immiscible fluids in a two-dimensional homogeneous porous medium in an L p -setting with p ∈ (1, ∞). The Sobolev space $W_p^s(\mathbb R)$ with s = 1+1/p is a critical space for this problem. We prove, for each s ∈ (1+1/p, 2) that the Rayleigh–Taylor condition identifies an open subset of $W_p^s(\mathbb R)$ within which the Muskat problem is of parabolic type. This enables us to establish the local well-posedness of the problem in all these subcritical spaces together with a parabolic smoothing property.



2021 ◽  
Vol 54 (5) ◽  
pp. 1315-1351
Author(s):  
Diego CÓRDOBA ◽  
Omar LAZAR


Author(s):  
Florent Noisette ◽  
László Székelyhidi

AbstractWe provide a quick proof of the existence of mixing weak solutions for the Muskat problem with variable mixing speed. Our proof is considerably shorter and extends previous results in Castro et al. (Mixing solutions for the Muskat problem, 2016, arXiv:1605.04822) and Förster and Székelyhidi (Comm Math Phys 363(3):1051–1080, 2018).



2020 ◽  
Vol 374 ◽  
pp. 107344
Author(s):  
Huy Q. Nguyen




Sign in / Sign up

Export Citation Format

Share Document