scholarly journals On well-posedness of the Muskat problem with surface tension

2020 ◽  
Vol 374 ◽  
pp. 107344
Author(s):  
Huy Q. Nguyen
Author(s):  
Anca-Voichita Matioc ◽  
Bogdan-Vasile Matioc

AbstractIn this paper we establish the well-posedness of the Muskat problem with surface tension and equal viscosities in the subcritical Sobolev spaces $$W^s_p(\mathbb {R})$$ W p s ( R ) , where $${p\in (1,2]}$$ p ∈ ( 1 , 2 ] and $${s\in (1+1/p,2)}$$ s ∈ ( 1 + 1 / p , 2 ) . This is achieved by showing that the mathematical model can be formulated as a quasilinear parabolic evolution problem in $$W^{\overline{s}-2}_p(\mathbb {R})$$ W p s ¯ - 2 ( R ) , where $${\overline{s}\in (1+1/p,s)}$$ s ¯ ∈ ( 1 + 1 / p , s ) . Moreover, we prove that the solutions become instantly smooth and we provide a criterion for the global existence of solutions.


2020 ◽  
Vol 22 (3) ◽  
Author(s):  
Bogdan-Vasile Matioc

Abstract We study the two-dimensional Muskat problem in a horizontally periodic setting and for fluids with arbitrary densities and viscosities. We show that in the presence of surface tension effects the Muskat problem is a quasilinear parabolic problem which is well-posed in the Sobolev space $$H^r({\mathbb {S}})$$ H r ( S ) for each $$r\in (2,3)$$ r ∈ ( 2 , 3 ) . When neglecting surface tension effects, the Muskat problem is a fully nonlinear evolution equation and of parabolic type in the regime where the Rayleigh–Taylor condition is satisfied. We then establish the well-posedness of the Muskat problem in the open subset of $$H^2({\mathbb {S}})$$ H 2 ( S ) defined by the Rayleigh–Taylor condition. Besides, we identify all equilibrium solutions and study the stability properties of trivial and of small finger-shaped equilibria. Also other qualitative properties of solutions such as parabolic smoothing, blow-up behavior, and criteria for global existence are outlined.


2011 ◽  
Vol 74 (17) ◽  
pp. 6074-6096 ◽  
Author(s):  
Borys V. Bazaliy ◽  
Nataliya Vasylyeva

2015 ◽  
Vol 27 (4) ◽  
pp. 647-666
Author(s):  
FRIEDRICH LIPPOTH ◽  
MARK A. PELETIER ◽  
GEORG PROKERT

Within the framework of variational modelling we derive a one-phase moving boundary problem describing the motion of a semipermeable membrane enclosing a viscous liquid, driven by osmotic pressure and surface tension of the membrane. For this problem we prove the existence of classical solutions for a short-time.


Sign in / Sign up

Export Citation Format

Share Document