concave utility function
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 0)

Author(s):  
Dieudonné Dieudo Ecike Ewanga

This paper presents the behavior of decision makers, the possible choices and the strategies 1 resulting from the uncertainties related to the integration of renewable energies. Its uncertainties 2 are the risks associated with the volatility of renewable sources, the dynamics of energy production 3 as well as the planning and operation of the electricity grid. The goal is to model the risk-averse 4 decision-maker’s behavior and the choice of integrating renewable energies into the electrical system. 5 Following a bibliographic approach, we expose a methodology to model the decision-maker’s 6 behavior(risk aversion and predilection for risk) to risk taking. The risk-averse decision maker may 7 adopt nonlinear utility functions. Risk aversion is a behavior that reflects the desire to avoid risk 8 decisions and thus reduces the risk of adverse consequences. A decision support tool is provided to 9 the decision-maker to choose a best-fit strategy based on his preferences. The rational and risk-averse 10 decision-maker would seek to maximize a concave utility function instead of seeking to minimize its 11 cost. Taste or aversion to risk can be modeled by a thematic function of utility.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mingming Gong ◽  
Shulin Liu

We study a first-price auction with two bidders where one bidder is characterized by a constant relative risk aversion utility function (i.e., a concave power function) while the other has a general concave utility function. We establish the existence and uniqueness of the optimal strategic markups and analyze the effects of one bidder’s risk aversion level on the optimal strategic markups of him and his opponent’s, the allocative efficiency of the auction, and the seller’s expected revenue, respectively.


2018 ◽  
Vol 22 (1) ◽  
pp. 77-100
Author(s):  
Olivier de La Grandville

Optimal growth theory as it stands today does not work. Using strictly concave utility functions systematically inflicts on the economy distortions that are either historically unobserved or unacceptable by society. Moreover, we show that the traditional approach is incompatible with competitive equilibrium: Any economy initially in such equilibrium will always veer away into unwanted trajectories if its investment is planned using a concave utility function. We then propose a rule for the optimal savings-investment rate based on competitive equilibrium that simultaneously generates three intertemporal optima for society. The rule always leads to reasonable time paths for all central economic variables, even under very different hypotheses about the future evolution of population and technical progress.


Sign in / Sign up

Export Citation Format

Share Document