interspecific relation
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

0
(FIVE YEARS 0)

Sociobiology ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. e7194
Author(s):  
Yoshiyuki Toyama ◽  
Izuru Kuroki ◽  
Keiji Nakamura

Eggs of some stick insects bear external appendages called capitula. Foraging worker ants attracted by capitula disperse eggs in a response similar to the responses of workers to elaiosome-bearing seeds of many plants. For this study, we conducted rearing experiments in the laboratory to elucidate the interspecific relation between the queenless ant, Pristomyrmex punctatus Smith, and the stick insect, Phraortes illepidus (Brunner von Wattenwyl) of which eggs bear capitula. Eggs of P. illepidus were proposed to P. punctatus in the laboratory. Capitula were removed from most of the eggs not only when ants were starved but also when ants were well-fed. In large rearing containers, eggs were transported by ants from their place of origin. Many eggs were transferred horizontally on the surface. Although some eggs were found in the artificial ant nests, it is likely that stick insects are not in active ant nests at the time of hatching in nature because of P. punctatus nest-moving habits. The percentage of eggs buried in the sand was small. Furthermore, most of the buried eggs were found at less than 3 cm depth. Results show that many P. illepidus hatchlings can reach host plants safely without being attacked by ant workers. These results suggest that P. punctatus can be a good partner of P. illepidus. Ants disperse eggs of slow-moving stink insects in exchange for some nutrition from capitula.


Author(s):  
Dominika Michalczyk-Wetula ◽  
Monika Jakubowska ◽  
Magdalena Felska ◽  
Dariusz Skarżyński ◽  
Joanna Mąkol ◽  
...  

AbstractTyrophagus putrescentiae (Schrank), commonly known as the cereal mite, cheese mite, or ham mite, is a cosmopolitan species reported from various environments in the wild, including soil, plant material and vertebrate nests. It has also been recognized as a common pest of food storages, mycological collections as well as plant and invertebrate laboratory cultures. Laboratory observations indicate that T. putrescentiae feeds on a large range of dermatophytes, yeasts and molds. We have observed the interspecific relation between this mite and several species of true slime molds (Mycetozoa) under laboratory conditions, which confirms the very broad spectrum of feeding habits of T. putrescentiae. Mycetozoans were grown in semi-sterile in vitro cultures and fed with oat flour or oat flakes. Tyrophagus putrescentiae displayed affinity to all macroscopically identifiable stages of the life cycle of Fuligo septica (L.) F.H. Wigg, Physarum polycephalum Schwein and the Didymium sp. complex [Didymium iridis (Ditmar) Fr., Didymium nigripes (Link) Fr. and Didymium bahiense Gottsb.]: live, decaying or dead plasmodia, sporangia, aethalia, spores and sclerotia. The relation carrying symptoms of various types of interspecific interaction, is hypothesized to form an evolutionarily young phenomenon, which not only identifies a new aspect of mycetozoal biology, but also presents the cereal mite as a species of high adaptive potential.


Author(s):  
A. Markova ◽  
V. Serebryakov

Aggression has important implications for ecological processes and evolutionary behavior strategies. Below there are the data concerning the aggression of blackbird and song thrush in natural conditions and the territories with significant anthropogenic influence on watering places during the nesting period, their relations to other behavior acts, their occupation dynamics during the day and the presence of other species of birds nearby. The interspecific and intraspecific contacts of thrushes are considered. The ratio of aggressive and non-aggressive contacts and the symmetry of interspecific relations (i.e. the ratio of interspecific relation initiated by the individuals of another species) were studied.


Sign in / Sign up

Export Citation Format

Share Document