queenless ant
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 2)

H-INDEX

20
(FIVE YEARS 1)

Sociobiology ◽  
2021 ◽  
Vol 68 (4) ◽  
pp. e7194
Author(s):  
Yoshiyuki Toyama ◽  
Izuru Kuroki ◽  
Keiji Nakamura

Eggs of some stick insects bear external appendages called capitula. Foraging worker ants attracted by capitula disperse eggs in a response similar to the responses of workers to elaiosome-bearing seeds of many plants. For this study, we conducted rearing experiments in the laboratory to elucidate the interspecific relation between the queenless ant, Pristomyrmex punctatus Smith, and the stick insect, Phraortes illepidus (Brunner von Wattenwyl) of which eggs bear capitula. Eggs of P. illepidus were proposed to P. punctatus in the laboratory. Capitula were removed from most of the eggs not only when ants were starved but also when ants were well-fed. In large rearing containers, eggs were transported by ants from their place of origin. Many eggs were transferred horizontally on the surface. Although some eggs were found in the artificial ant nests, it is likely that stick insects are not in active ant nests at the time of hatching in nature because of P. punctatus nest-moving habits. The percentage of eggs buried in the sand was small. Furthermore, most of the buried eggs were found at less than 3 cm depth. Results show that many P. illepidus hatchlings can reach host plants safely without being attacked by ant workers. These results suggest that P. punctatus can be a good partner of P. illepidus. Ants disperse eggs of slow-moving stink insects in exchange for some nutrition from capitula.



2021 ◽  
Vol 288 (1958) ◽  
pp. 20211456 ◽  
Author(s):  
Giacomo Alciatore ◽  
Line V. Ugelvig ◽  
Erik Frank ◽  
Jérémie Bidaux ◽  
Asaf Gal ◽  
...  

Social animals display a wide range of behavioural defences against infectious diseases, some of which increase social contacts with infectious individuals (e.g. mutual grooming), while others decrease them (e.g. social exclusion). These defences often rely on the detection of infectious individuals, but this can be achieved in several ways that are difficult to differentiate. Here, we combine non-pathogenic immune challenges with automated tracking in colonies of the clonal raider ant to ask whether ants can detect the immune status of their social partners and to quantify their behavioural responses to this perceived infection risk. We first show that a key behavioural response elicited by live pathogens (allogrooming) can be qualitatively recapitulated by immune challenges alone. Automated scoring of interactions between all colony members reveals that this behavioural response increases the network centrality of immune-challenged individuals through a general increase in physical contacts. These results show that ants can detect the immune status of their nest-mates and respond with a general ‘caring’ strategy, rather than avoidance, towards social partners that are perceived to be infectious. Finally, we find no evidence that changes in cuticular hydrocarbon profiles drive these behavioural effects.



2019 ◽  
Vol 164 ◽  
pp. 86-90
Author(s):  
Julia Giehr ◽  
Tomer J. Czaczkes ◽  
Jürgen Heinze
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document