silyl radicals
Recently Published Documents


TOTAL DOCUMENTS

139
(FIVE YEARS 6)

H-INDEX

25
(FIVE YEARS 0)

Synlett ◽  
2020 ◽  
Author(s):  
Chen Zhu ◽  
Huihui Zhang ◽  
Meishan Ji ◽  
Youhao Wei ◽  
Haodong Chen ◽  
...  

AbstractA radical-mediated hetaryl functionalization of nonactivated alkenes through distal ipso-migration of O- or S-containing hetaryls was developed. Furyl, benzofuryl, thienyl, and benzothienyl groups showed satisfactory migratory abilities. A variety of heteroatom-centered radicals, including azido, trifluoromethylsulfanyl, and silyl radicals readily trigger the migration cascade, and a new C–heteroatom and C–C bond are concomitantly constructed in the reaction. This method provides an efficient approach to the synthesis of high-valued complex O- or S-hetaryl compounds.


2020 ◽  
Author(s):  
Lingxiang Lu ◽  
Juno Siu ◽  
Yihuan Lai ◽  
Song Lin

The construction of C(sp<sup>3</sup>)–Si bonds is important in synthetic, medicinal, and materials chemistry. In this context, reactions mediated by silyl radicals have become increasingly attractive but methods for accessing these intermediates remain limited. We present a new strategy for silyl radical generation via electroreduction of readily available chlorosilanes. At highly biased potentials, electrochemistry grants access to silyl radicals through energetically uphill reductive cleavage of strong Si–Cl bonds. This strategy proved to be general in various alkene silylation reactions including disilylation, hydrosilylation, and allylic silylation under simple and transition-metal-free conditions.


2020 ◽  
Author(s):  
Lingxiang Lu ◽  
Juno Siu ◽  
Yihuan Lai ◽  
Song Lin

The construction of C(sp<sup>3</sup>)–Si bonds is important in synthetic, medicinal, and materials chemistry. In this context, reactions mediated by silyl radicals have become increasingly attractive but methods for accessing these intermediates remain limited. We present a new strategy for silyl radical generation via electroreduction of readily available chlorosilanes. At highly biased potentials, electrochemistry grants access to silyl radicals through energetically uphill reductive cleavage of strong Si–Cl bonds. This strategy proved to be general in various alkene silylation reactions including disilylation, hydrosilylation, and allylic silylation under simple and transition-metal-free conditions.


2020 ◽  
Author(s):  
Lingxiang Lu ◽  
Juno Siu ◽  
Yihuan Lai ◽  
Song Lin

The construction of C(sp<sup>3</sup>)–Si bonds is important in synthetic, medicinal, and materials chemistry. In this context, reactions mediated by silyl radicals have become increasingly attractive but methods for accessing these intermediates remain limited. We present a new strategy for silyl radical generation via electroreduction of readily available chlorosilanes. At highly biased potentials, electrochemistry grants access to silyl radicals through energetically uphill reductive cleavage of strong Si–Cl bonds. This strategy proved to be general in various alkene silylation reactions including disilylation, hydrosilylation, and allylic silylation under simple and transition-metal-free conditions.


2020 ◽  
Author(s):  
Lingxiang Lu ◽  
Juno Siu ◽  
Yihuan Lai ◽  
Song Lin

The construction of C(sp<sup>3</sup>)–Si bonds is important in synthetic, medicinal, and materials chemistry. In this context, reactions mediated by silyl radicals have become increasingly attractive but methods for accessing these intermediates remain limited. We present a new strategy for silyl radical generation via electroreduction of readily available chlorosilanes. At highly biased potentials, electrochemistry grants access to silyl radicals through energetically uphill reductive cleavage of strong Si–Cl bonds. This strategy proved to be general in various alkene silylation reactions including disilylation, hydrosilylation, and allylic silylation under simple and transition-metal-free conditions.


2019 ◽  
Vol 13 (24) ◽  
pp. 11-16
Author(s):  
Viatcheslav V. Jouikov
Keyword(s):  

2016 ◽  
Author(s):  
G.P. Moss ◽  
P.A.S. Smith ◽  
D. Tavernier
Keyword(s):  

2015 ◽  
Vol 2 (5) ◽  
pp. 459-463 ◽  
Author(s):  
Liang Xu ◽  
Shuai Zhang ◽  
Pengfei Li

Effective synthetic methods, involving silyl radical intermediates and furnishing silafluorenes and silaindenes via direct Si–H and C–H cleavage in one step, have been developed.


Sign in / Sign up

Export Citation Format

Share Document