weil restriction
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
Giulio Bresciani

AbstractJ. Stix proved that a curve of positive genus over $$\mathbb {Q}$$ Q which maps to a non-trivial Brauer–Severi variety satisfies the section conjecture. We prove that, if X is a curve of positive genus over a number field k and the Weil restriction $$R_{k/\mathbb {Q}}X$$ R k / Q X admits a rational map to a non-trivial Brauer–Severi variety, then X satisfies the section conjecture. As a consequence, if X maps to a Brauer–Severi variety P such that the corestriction $${\text {cor}}_{k/\mathbb {Q}}([P])\in {\text {Br}}(\mathbb {Q})$$ cor k / Q ( [ P ] ) ∈ Br ( Q ) is non-trivial, then X satisfies the section conjecture.


2019 ◽  
Vol Volume 3 ◽  
Author(s):  
Matthieu ROMAGNY ◽  
Dajano Tossici

International audience We provide an equivalence between the category of affine, smooth group schemes over the ring of generalized dual numbers $k[I]$, and the category of extensions of the form $1 \to \text{Lie}(G, I) \to E \to G \to 1$ where G is an affine, smooth group scheme over k. Here k is an arbitrary commutative ring and $k[I] = k \oplus I$ with $I^2 = 0$. The equivalence is given by Weil restriction, and we provide a quasi-inverse which we call Weil extension. It is compatible with the exact structures and the $\mathbb{O}_k$-module stack structures on both categories. Our constructions rely on the use of the group algebra scheme of an affine group scheme; we introduce this object and establish its main properties. As an application, we establish a Dieudonné classification for smooth, commutative, unipotent group schemes over $k[I]$. Nous construisons une équivalence entre la catégorie des schémas en groupes affines et lisses sur l'anneau des nombres duaux généralisés k[I], et la catégorie des extensions de la forme 1 → Lie(G, I) → E → G → 1 où G est un schéma en groupes affine, lisse sur k. Ici k est un anneau commutatif arbitraire et k[I] = k ⊕ I avec I 2 = 0. L'équivalence est donnée par la restriction de Weil, et nous construisons un foncteur quasi-inverse explicite que nous appelons extension de Weil. Ces foncteurs sont compatibles avec les structures exactes et avec les structures de champs en O k-modules des deux catégories. Nos constructions s'appuient sur le schéma en algèbres de groupe d'un schéma en groupes affines, que nous introduisons et dont nous donnons les propriétés principales. En application, nous donnons une classification de Dieudonné pour les schémas en groupes commutatifs, lisses, unipotents sur k[I] lorsque k est un corps parfait.


2017 ◽  
Vol 96 (2) ◽  
pp. 196-204
Author(s):  
MASAMITSU SHIMAKURA

We describe the ramification in cyclic extensions arising from the Kummer theory of the Weil restriction of the multiplicative group. This generalises the classical theory of Hecke describing the ramification of Kummer extensions.


2016 ◽  
Vol 152 (12) ◽  
pp. 2563-2601 ◽  
Author(s):  
Brandon Levin

We extend the group-theoretic construction of local models of Pappas and Zhu [Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math.194(2013), 147–254] to the case of groups obtained by Weil restriction along a possibly wildly ramified extension. This completes the construction of local models for all reductive groups when$p\geqslant 5$. We show that the local models are normal with special fiber reduced and study the monodromy action on the sheaves of nearby cycles. As a consequence, we prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central function in the parahoric Hecke algebra. We also introduce a notion of splitting model and use this to study the inertial action in the case of an unramified group.


2016 ◽  
Vol 285 (1-2) ◽  
pp. 607-612
Author(s):  
Alessandra Bertapelle ◽  
Cristian D. González-Avilés

Author(s):  
Brian Conrad ◽  
Gopal Prasad

This chapter considers automorphisms, isomorphisms, and Tits classification. It begins by establishing a version of the Isomorphism Theorem for pseudo-split pseudo-reductive groups, along with a pseudo-reductive variant of the Isogeny Theorem for split connected semisimple groups. The key to both proofs is a technique to construct pseudo-reductive subgroups of an ambient smooth affine group. Some instructive examples over imperfect fields k of characteristic 2 are given. The chapter goes on to discuss the behavior of the k-group ZG,C with respect to Weil restriction in the pseudoreductive case. It also describes automorphism schemes for pseudo-reductive groups, focusing only on the pseudo-semisimple case because commutative pseudo-reductive groups that are not tori generally have a non-representable automorphism functor. Finally, it examines Tits-style classification, using Dynkin diagrams to express the classification theorem.


Author(s):  
Brian Conrad ◽  
Gopal Prasad

This chapter describes the construction of canonical central extensions that are analogues for perfect smooth connected affine k-groups of the simply connected central cover of a connected semisimple k-group. A commutative affine k-group scheme of finite type is k-tame if it does not contain a nontrivial unipotent k-subgroup scheme. The chapter establishes good properties of the universal smooth k-tame central extension, noting that the property “locally of minimal type” is inherited by pseudo-reductive central quotients of pseudo-reductive groups. Although inseparable Weil restriction does not generally preserve perfectness, the chapter shows that the formation of the universal smooth k-tame central extension interacts with derived groups of Weil restrictions.


2015 ◽  
Vol 2 (4) ◽  
pp. 514-534
Author(s):  
Roy Skjelnes
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document