Universal smooth k-tame central extension

Author(s):  
Brian Conrad ◽  
Gopal Prasad

This chapter describes the construction of canonical central extensions that are analogues for perfect smooth connected affine k-groups of the simply connected central cover of a connected semisimple k-group. A commutative affine k-group scheme of finite type is k-tame if it does not contain a nontrivial unipotent k-subgroup scheme. The chapter establishes good properties of the universal smooth k-tame central extension, noting that the property “locally of minimal type” is inherited by pseudo-reductive central quotients of pseudo-reductive groups. Although inseparable Weil restriction does not generally preserve perfectness, the chapter shows that the formation of the universal smooth k-tame central extension interacts with derived groups of Weil restrictions.

Author(s):  
Brian Conrad ◽  
Gopal Prasad

This chapter deals with central extensions and groups locally of minimal type. It begins with a discussion of the general lemma on the behavior of the scheme-theoretic center with respect to the formation of central quotient maps between pseudo-reductive groups; this lemma generalizes a familiar fact in the connected reductive case. The chapter then considers four phenomena that go beyond the quadratic case, along with a pseudo-reductive group of minimal type that is locally of minimal type. It shows that the pseudo-split absolutely pseudo-simple k-groups of minimal type with a non-reduced root system are classified over any imperfect field of characteristic 2. In this classification there is no effect if the “minimal type” hypothesis is relaxed to “locally of minimal type.”


Author(s):  
Brian Conrad ◽  
Gopal Prasad

This book deals with the classification of pseudo-reductive groups. Using new techniques and constructions, it addresses a number of questions; for example, whether there are versions of the Isomorphism and Isogeny Theorems for pseudosplit pseudo-reductive groups and of the Existence Theorem for pseudosplit pseudo-simple groups; whether the automorphism functor of a pseudo-semisimple group is representable; or whether there is a Tits-style classification in the pseudo-semisimple case recovering the version due to Tits in the semisimple case. This introduction discusses the special challenges of characteristic 2 as well as root systems, exotic groups and degenerate quadratic forms, and tame central extensions. It also reviews generalized standard groups, minimal type and general structure theorem, and Galois-twisted forms and Tits classification.


2001 ◽  
Vol 94 (1) ◽  
pp. 5-85 ◽  
Author(s):  
Jean-Luc Brylinski ◽  
Pierre Deligne

Author(s):  
Brian Conrad ◽  
Gopal Prasad

This chapter considers automorphisms, isomorphisms, and Tits classification. It begins by establishing a version of the Isomorphism Theorem for pseudo-split pseudo-reductive groups, along with a pseudo-reductive variant of the Isogeny Theorem for split connected semisimple groups. The key to both proofs is a technique to construct pseudo-reductive subgroups of an ambient smooth affine group. Some instructive examples over imperfect fields k of characteristic 2 are given. The chapter goes on to discuss the behavior of the k-group ZG,C with respect to Weil restriction in the pseudoreductive case. It also describes automorphism schemes for pseudo-reductive groups, focusing only on the pseudo-semisimple case because commutative pseudo-reductive groups that are not tori generally have a non-representable automorphism functor. Finally, it examines Tits-style classification, using Dynkin diagrams to express the classification theorem.


Author(s):  
E Arasteh Rad ◽  
Urs Hartl

Abstract This is the 2nd in a sequence of articles, in which we explore moduli stacks of global $\mathfrak{G}$-shtukas, the function field analogs for Shimura varieties. Here $\mathfrak{G}$ is a flat affine group scheme of finite type over a smooth projective curve $C$ over a finite field. Global $\mathfrak{G}$-shtukas are generalizations of Drinfeld shtukas and analogs of abelian varieties with additional structure. We prove that the moduli stacks of global $\mathfrak{G}$-shtukas are algebraic Deligne–Mumford stacks separated and locally of finite type. They generalize various moduli spaces used by different authors to prove instances of the Langlands program over function fields. In the 1st article we explained the relation between global $\mathfrak{G}$-shtukas and local ${{\mathbb{P}}}$-shtukas, which are the function field analogs of $p$-divisible groups. Here ${{\mathbb{P}}}$ is the base change of $\mathfrak{G}$ to the complete local ring at a point of $C$. When ${{\mathbb{P}}}$ is smooth with connected reductive generic fiber we proved the existence of Rapoport–Zink spaces for local ${{\mathbb{P}}}$-shtukas. In the present article we use these spaces to (partly) uniformize the moduli stacks of global $\mathfrak{G}$-shtukas for smooth $\mathfrak{G}$ with connected fibers and reductive generic fiber. This is our main result. It has applications to the analog of the Langlands–Rapoport conjecture for our moduli stacks.


2016 ◽  
Vol 152 (12) ◽  
pp. 2563-2601 ◽  
Author(s):  
Brandon Levin

We extend the group-theoretic construction of local models of Pappas and Zhu [Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math.194(2013), 147–254] to the case of groups obtained by Weil restriction along a possibly wildly ramified extension. This completes the construction of local models for all reductive groups when$p\geqslant 5$. We show that the local models are normal with special fiber reduced and study the monodromy action on the sheaves of nearby cycles. As a consequence, we prove a conjecture of Kottwitz that the semi-simple trace of Frobenius gives a central function in the parahoric Hecke algebra. We also introduce a notion of splitting model and use this to study the inertial action in the case of an unramified group.


1966 ◽  
Vol 27 (2) ◽  
pp. 733-745 ◽  
Author(s):  
N. Burgoyne ◽  
P. Fong

The Mathieu groups are the finite simple groups M11, M12, M22, M23, M24 given originally as permutation groups on respectively 11, 12, 22, 23, 24 symbols. Their definition can best be found in the work of Witt [1]. Using a concept from Lie group theory we can describe the Schur multiplier of a group as the center of a “simply-connected” covering of that group. A precise definition will be given later. We also mention that the Schur multiplier of a group is the second cohomology group of that group acting trivially on the complex roots of unity. The purpose of this paper is to determine the Schur multipliers of the five Mathieu groups.


2018 ◽  
Vol 17 (07) ◽  
pp. 1850134 ◽  
Author(s):  
J. L. Castiglioni ◽  
X. García-Martínez ◽  
M. Ladra

In this paper, we study the universal central extension of a Lie–Rinehart algebra and we give a description of it. Then we study the lifting of automorphisms and derivations to central extensions. We also give a definition of a non-abelian tensor product in Lie–Rinehart algebras based on the construction of Ellis of non-abelian tensor product of Lie algebras. We relate this non-abelian tensor product to the universal central extension.


2017 ◽  
Vol 2019 (16) ◽  
pp. 4899-4949 ◽  
Author(s):  
Ian Le

Abstract Let $S$ be a surface, $G$ a simply-connected semi-simple group, and $G'$ the associated adjoint form of the group. In Fock and Goncharov [4], the authors show that the moduli spaces of framed local systems $\mathcal{X}_{G',S}$ and $\mathcal{A}_{G,S}$ have the structure of cluster varieties when $G$ had type $A$. This was extended to classical groups in Le [12]. In this article, we give a method for constructing the cluster structure for general reductive groups $G$. The method depends on being able to carry out some explicit computations, and depends on some mild hypotheses, which we state, and which we believe hold in general. These hypotheses hold when $G$ has type $G_2,$ and therefore we are able to construct the cluster structure in this case. We also illustrate our approach by rederiving the cluster structure for $G$ of type $A$. Our goals are to give some heuristics for the approach taken in Le [12], point out the difficulties that arise for more general groups, and to record some useful calculations. Forthcoming work by Goncharov and Shen gives a different approach to constructing the cluster structure on $\mathcal{X}_{G',S}$ and $\mathcal{A}_{G,S}$. We hope that some of the ideas here complement their more comprehensive work.


Sign in / Sign up

Export Citation Format

Share Document