hypersequent calculi
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 6)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
pp. 1-30
Author(s):  
Yaroslav Petrukhin

The aim of the paper is to present some non-standard modalities (such as non-contingency, contingency, essence and accident) based on S5-models in a framework of cut-free hypersequent calculi. We also study negated modalities, i.e. negated necessity and negated possibility, which produce paraconsistent and paracomplete negations respectively. As a basis for our calculi, we use Restall's cut-free hypersequent calculus for S5. We modify its rules for the above-mentioned modalities and prove strong soundness and completeness theorems by a Hintikka-style argument. As a consequence, we obtain a cut admissibility theorem. Finally, we present a constructive syntactic proof of cut elimination theorem.


Author(s):  
Tiziano Dalmonte ◽  
Björn Lellmann ◽  
Nicola Olivetti ◽  
Elaine Pimentel

Abstract We present some hypersequent calculi for all systems of the classical cube and their extensions with axioms ${T}$, ${P}$ and ${D}$ and for every $n \geq 1$, rule ${RD}_n^+$. The calculi are internal as they only employ the language of the logic, plus additional structural connectives. We show that the calculi are complete with respect to the corresponding axiomatization by a syntactic proof of cut elimination. Then, we define a terminating proof search strategy in the hypersequent calculi and show that it is optimal for coNP-complete logics. Moreover, we show that from every failed proof of a formula or hypersequent it is possible to directly extract a countermodel of it in the bi-neighbourhood semantics of polynomial size for coNP logics, and for regular logics also in the relational semantics. We finish the paper by giving a translation between hypersequent rule applications and derivations in a labelled system for the classical cube.


10.29007/ngp3 ◽  
2018 ◽  
Author(s):  
Agata Ciabattoni ◽  
Revantha Ramanayake

We introduce a new proof-theoretic framework which enhances the expressive power of bunched sequents by extending them with a hypersequent structure. A general cut-elimination theorem that applies to bunched hypersequent calculi satisfying general rule conditions is then proved. We adapt the methods of transforming axioms into rules to provide cutfree bunched hypersequent calculi for a large class of logics extending the distributive commutative Full Lambek calculus DFLe and Bunched Implication logic BI. The methodology is then used to formulate new logics equipped with a cutfree calculus in the vicinity of Boolean BI.


2017 ◽  
Vol 46 (1/2) ◽  
Author(s):  
Andrzej Indrzejczak

Hypersequent calculi (HC) can formalize various non-classical logics. In [9] we presented a non-commutative variant of HC for the weakest temporal logic of linear frames Kt4.3 and some its extensions for dense and serial flow of time. The system was proved to be cut-free HC formalization of respective temporal logics by means of Schütte/Hintikka-style semantical argument using models built from saturated hypersequents. In this paper we present a variant of this calculus for Kt4.3 with a constructive syntactical proof of cut elimination.


Sign in / Sign up

Export Citation Format

Share Document