demazure module
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

10.37236/9278 ◽  
2020 ◽  
Vol 27 (3) ◽  
Author(s):  
Eunjeong Lee

Let $G$ be a complex simply-laced semisimple algebraic group of rank $r$ and $B$ a Borel subgroup. Let $\mathbf i \in [r]^n$ be a word and let $\boldsymbol{\ell} = (\ell_1,\dots,\ell_n)$ be a sequence of non-negative integers. Grossberg and Karshon introduced a virtual lattice polytope associated to $\mathbf i$ and $\boldsymbol{\ell}$ called a twisted cube, whose lattice points encode the character of a $B$-representation. More precisely, lattice points in the twisted cube, counted with sign according to a certain density function, yields the character of the generalized Demazure module determined by $\mathbf i$ and $\boldsymbol{\ell}$. In recent work, the author and Harada described precisely when the Grossberg–Karshon twisted cube is untwisted, i.e., the twisted cube is a closed convex polytope, in the situation when the integer sequence $\boldsymbol{\ell}$ comes from a weight $\lambda$ of $G$. However, not every integer sequence $\boldsymbol{\ell}$ comes from a weight of $G$. In the present paper, we interpret the untwistedness of Grossberg–Karshon twisted cubes associated with any word $\mathbf i$ and any integer sequence $\boldsymbol{\ell}$ using the combinatorics of $\mathbf i$ and $\boldsymbol{\ell}$. Indeed, we prove that the Grossberg–Karshon twisted cube is untwisted precisely when $\mathbf i$ is hesitant-jumping-$\boldsymbol{\ell}$-walk-avoiding.



10.37236/8383 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Thomas Lam

A positroid variety is an intersection of cyclically rotated Grassmannian Schubert varieties.  Each graded piece of the homogeneous coordinate ring of a positroid variety is the intersection of cyclically rotated (rectangular) Demazure modules, which we call the cyclic Demazure module.  In this note, we show that the cyclic Demazure module has a canonical basis, and define the cyclic Demazure crystal.



2015 ◽  
Vol 17 (1) ◽  
pp. 75-105 ◽  
Author(s):  
Matheus Brito ◽  
Vyjayanthi Chari ◽  
Adriano Moura

We study the classical limit of a family of irreducible representations of the quantum affine algebra associated to $\mathfrak{sl}_{n+1}$. After a suitable twist, the limit is a module for $\mathfrak{sl}_{n+1}[t]$, i.e., for the maximal standard parabolic subalgebra of the affine Lie algebra. Our first result is about the family of prime representations introduced in Hernandez and Leclerc (Duke Math. J.154 (2010), 265–341; Symmetries, Integrable Systems and Representations, Springer Proceedings in Mathematics & Statitics, Volume 40, pp. 175–193 (2013)), in the context of a monoidal categorification of cluster algebras. We show that these representations specialize (after twisting) to $\mathfrak{sl}_{n+1}[t]$-stable prime Demazure modules in level-two integrable highest-weight representations of the classical affine Lie algebra. It was proved in Chari et al. (arXiv:1408.4090) that a stable Demazure module is isomorphic to the fusion product of stable prime Demazure modules. Our next result proves that such a fusion product is the limit of the tensor product of the corresponding irreducible prime representations of quantum affine $\mathfrak{sl}_{n+1}$.



Sign in / Sign up

Export Citation Format

Share Document