fluid replacement therapy
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2020 ◽  
Vol 18 (1) ◽  
pp. 34-38
Author(s):  
Pejman Pourfakhr ◽  
Mohaddese Shafiei ◽  
Farhad Etezadi ◽  
Mohammad Reza Khajavi ◽  
Reza Shariat Moharari


JAMA ◽  
2020 ◽  
Vol 323 (3) ◽  
pp. 217 ◽  
Author(s):  
Fernando G. Zampieri ◽  
Alexandre B. Cavalcanti


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 992-992
Author(s):  
Daria Gaut ◽  
Jennifer Jones ◽  
Caroline Chen ◽  
Sanaz Ghafouri ◽  
Mei Ling ◽  
...  

Introduction Fluid replacement therapy is often used as a primary treatment modality in vaso-occlusive crises for sickle cell disease. However, aggressive intravenous fluid administration can lead to complications, including pulmonary vascular congestion and acute chest syndrome. Data is limited on the safety, efficacy, and variability of fluid replacement therapy in this context. This study describes the extent of and outcomes associated with receiving fluid replacement therapy for vaso-occlusive episodes at a single institution. Methods We performed a retrospective analysis on 157 unique patient encounters from 49 sickle cell patients hospitalized with a vaso-occlusive episode at the University of California Los Angeles between 2013 and 2017. Fluid administration measurements were derived from documented intakes (both oral and intravenous fluids) in the medical record. The association between fluid administration and outcomes were analyzed using chi-squared and Fisher's exact tests followed by univariate and multivariate logistic regression. Results The mean age of the patient cohort at the time of hospital admission was 36.0 years (Std 7.9). Most encounters were from patients with hemoglobin SS disease (147 encounters, 93.6%). Twenty-two of the encounters (14.0%) were from patients on hemodialysis prior to admission. The majority of admissions were to an observation unit (99 encounters, 63.1%), whereas 53 admissions (33.8%) were to an inpatient service and 5 encounters (3.2%) were solely in the emergency room. The median length of hospital stay was 4 days (IQR 2-7). The mean total amount of intravenous fluid administered during the hospitalization was 7.4 L (Std 9.6). The mean total amount of fluid intake including intravenous fluids, blood transfusions, and oral fluids was 6.5 L (Std 10.0) (Table 1). The most common clinical outcome that occurred during the hospitalizations was a new oxygen requirement in 28 encounters (17.8%). Other clinical outcomes noted were acute chest syndrome (12 encounters, 7.6%), an aspiration event (2 encounters, 1.3%), other type of hospital-acquired infection (2 encounters, 1.3%, which included Clostridium difficile colitis and Staphylococcus epidermidis bacteremia), acute kidney injury (3 encounters, 1.9%), and intensive care unit transfer (3 encounters, 1.9%). There was a significant association between receiving more than 3 L of intravenous fluid and the development of any of the adverse events listed (p = 0.029) but no association between fluid administration and each individual adverse event (Table 2). Logistic regression analysis confirmed that patients with higher fluid intake were more likely to develop any adverse event (Table 3, Table 4). In multivariable analysis, each component including oral intake during hospitalization (p = 0.041, OR 1.065, 95% CI 1.003-1.132), intravenous fluid administered in the first 24 hours (p = 0.001, OR 1.899, 95% CI 1.319-2.733), total amount of intravenous fluid administered (p = 0.005, OR 1.081, 95% CI 1.023-1.141), and total amount of fluid intake (p = 0.040, OR 1.065, 95% CI 1.003-1.132) all revealed a statistically significant association between higher fluid administration and the development of any adverse event. Other factors found to be significantly associated with any adverse event were dialysis dependence prior to admission (p = 0.000, OR 8.686, 95% CI 2.881-26.190) and admission to inpatient service versus emergency room or observation unit (p = 0.018, OR 2.758, 95% CI 1.186-6.416). Conclusions There was a statistically significant association between higher fluid intake (both oral and intravenous) and the development of any adverse event during hospitalization for sickle cell vaso-occlusive crisis including a new oxygen requirement, acute chest syndrome, aspiration event, other hospital-acquired infection, acute kidney injury, and intensive care unit transfer. While fluid administration may theoretically slow the sickling process, our data suggests that excessive fluid administration during a vaso-occlusive episode may be harmful. Further study is necessary to further elucidate the relationships between exogenous fluids, vaso-occlusion, and adverse events in sickle cell patients. *Equal contribution from Daria Gaut and Jennifer Jones for this work. Disclosures No relevant conflicts of interest to declare.



2017 ◽  
pp. 85-85
Author(s):  
Mohan Maharaj ◽  
Disha Magatpalli


2009 ◽  
Vol 56 (1) ◽  
pp. 67-76
Author(s):  
R. Sindjelic ◽  
G. Vlajkovic ◽  
D. Markovic ◽  
V. Bumbasirevic

Careful assessment of the fluid balance is required in the perioperative period since appropriate fluid therapy is essential for successful patient's outcome. Haemodynamic monitoring allows understanding the physiology of the circulation and changes of fluid balance in the perioperative period. This is diagnostic aid and guide for fluid replacement therapy. Patient's volume status is frequently assessed by different haemodynamic variables that could be targeted as the endpoints for fluid therapy and resuscitation. Fluid balance is the crucial factor in the maintenance of haemodynamic stability, tissue oxygenation and organ function. When the haemodynamic monitoring is applied in a rigorous and consistent manner, it reduces mortality and length of stay as well as costs incurred. There are a number of tests which describe the effectiveness of the invasive haemodynamic monitoring procedures usage. Since the pulmonary artery catheter (PAC) had been introduced into clinical practice it was considered as a golden standard for cardiac output measurements, haemodynamic and fluid balance assessment. Nevertheless, in previous 10 years new minimally invasive and noninvasive simple techniques for haemodynamic monitoring and patient's hydroelectricity status evaluation have been developed. They can replace PAC under different clinical circumstances and some of these techniques additionally allow a more refined perioperative fluid assessment. The aim of this article is to describe actually technique of haemodynamic measurement and assessment of fluid status and therapy in perioperative period.



Sign in / Sign up

Export Citation Format

Share Document