decay function model
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Liang Tan ◽  
Changfeng Yao ◽  
Dinghua Zhang ◽  
Junxue Ren

This article introduces two comprehensive experimental models to predict the compressive residual stress profile induced in TC17 alloy after shot peening. Experiments are carried out utilizing one of experimental design techniques based on response surface methodology. Shot peening intensity and coverage are considered as two input parameters affecting compressive residual stress profile. The characteristic parameters model is created by regression analysis, which has the capability of predicting the four main characteristic parameters of a typical compressive residual stress profile. Based on this model, the absolute sensitivity of characteristic parameters with respect to shot peening intensity and coverage is analyzed. The sinusoidal decay function model is created with a proposition of that the compressive residual stress profile is a sinusoidal decay function of the depth beneath surface and the coefficients of this function are, in turn, functions of the two input shot peening parameters. The main advantage of sinusoidal decay function model over characteristic parameters model is that it provides the effect of shot peening parameters on the shape of the compressive residual stress profile. The two models have been checked for accuracy by two extra tests. The results show that the prediction errors of the four main characteristic parameters are within 20%, and the compressive residual stress profiles predicted by the sinusoidal decay function model are in consistent with experimental data.


Sign in / Sign up

Export Citation Format

Share Document