pseudocomplemented poset
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 753
Author(s):  
Ivan Chajda ◽  
Helmut Länger

In order to be able to use methods of universal algebra for investigating posets, we assigned to every pseudocomplemented poset, to every relatively pseudocomplemented poset and to every sectionally pseudocomplemented poset, a certain algebra (based on a commutative directoid or on a λ-lattice) which satisfies certain identities and implications. We show that the assigned algebras fully characterize the given corresponding posets. A certain kind of symmetry can be seen in the relationship between the classes of mentioned posets and the classes of directoids and λ-lattices representing these relational structures. As we show in the paper, this relationship is fully symmetric. Our results show that the assigned algebras satisfy strong congruence properties which can be transferred back to the posets. We also mention applications of such posets in certain non-classical logics.



Order ◽  
2021 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger ◽  
Jan Paseka

AbstractThe concept of a sectionally pseudocomplemented lattice was introduced in Birkhoff (1979) as an extension of relative pseudocomplementation for not necessarily distributive lattices. The typical example of such a lattice is the non-modular lattice N5. The aim of this paper is to extend the concept of sectional pseudocomplementation from lattices to posets. At first we show that the class of sectionally pseudocomplemented lattices forms a variety of lattices which can be described by two simple identities. This variety has nice congruence properties. We summarize properties of sectionally pseudocomplemented posets and show differences to relative pseudocomplementation. We prove that every sectionally pseudocomplemented poset is completely L-semidistributive. We introduce the concept of congruence on these posets and show when the quotient structure becomes a poset again. Finally, we study the Dedekind-MacNeille completion of sectionally pseudocomplemented posets. We show that contrary to the case of relatively pseudocomplemented posets, this completion need not be sectionally pseudocomplemented but we present the construction of a so-called generalized ordinal sum which enables us to construct the Dedekind-MacNeille completion provided the completions of the summands are known.



2018 ◽  
Vol 11 (06) ◽  
pp. 1850097 ◽  
Author(s):  
Ivan Chajda ◽  
Helmut Länger

Using the operators of taking upper and lower cones in a poset with a unary operation, we define operators [Formula: see text] and [Formula: see text] in the sense of multiplication and residuation, respectively, and we show that by using these operators, a general modification of residuation can be introduced. A relatively pseudocomplemented poset can be considered as a prototype of such an operator residuated poset. As main results, we prove that every Boolean poset as well as every pseudo-orthomodular poset can be organized into a (left) operator residuated structure. Some results on pseudo-orthomodular posets are presented which show the analogy to orthomodular lattices and orthomodular posets.



2014 ◽  
Vol 64 (2) ◽  
Author(s):  
Vinayak Joshi ◽  
Anagha Khiste

AbstractIn this paper, it is proved that if B is a Boolean poset and S is a bounded pseudocomplemented poset such that S\Z(S) = {1}, then Γ(B) ≌ Γ(S) if and only if B ≌ S. Further, we characterize the graphs which can be realized as zero divisor graphs of Boolean posets.



Sign in / Sign up

Export Citation Format

Share Document