perfect reconstruction filter banks
Recently Published Documents


TOTAL DOCUMENTS

123
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 0)

Author(s):  
S. Pitchai Murugan ◽  
G. P. Youvaraj

The Franklin wavelet is constructed using the multiresolution analysis (MRA) generated from a scaling function [Formula: see text] that is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text] for every [Formula: see text]. For [Formula: see text] and [Formula: see text], it is shown that if a function [Formula: see text] is continuous on [Formula: see text], linear on [Formula: see text] and [Formula: see text], for [Formula: see text], and generates MRA with dilation factor [Formula: see text], then [Formula: see text]. Conversely, for [Formula: see text], it is shown that there exists a [Formula: see text], as satisfying the above conditions, that generates MRA with dilation factor [Formula: see text]. The frame MRA (FMRA) is useful in signal processing, since the perfect reconstruction filter banks associated with FMRA can be narrow-band. So it is natural to ask, whether the above results can be extended for the case of FMRA. In this paper, for [Formula: see text], we prove that if [Formula: see text] generates FMRA with dilation factor [Formula: see text], then [Formula: see text]. For [Formula: see text], we prove similar results when [Formula: see text]. In addition, for [Formula: see text] we prove that there exists a function [Formula: see text] as satisfying the above conditions, that generates FMRA. Also, we construct tight wavelet frame and wavelet frame for such scaling functions.


2013 ◽  
Vol 20 (3) ◽  
pp. 359-370 ◽  
Author(s):  
Dimitar Taskovski ◽  
Ljubica Koleva ◽  
Aleksandar Milchevski ◽  
Vladimir Dimcev

Abstract The wavelet transform has been successfully used in the area of power quality analysis. There are many published papers with methods for power quality disturbance classification or harmonics measurement, which use wavelet transform. However, the properties of the wavelet transform can drastically vary from the choice of the wavelet. In this paper we analyze the influence of the choice of the wavelet to the accuracy of the power quality classification method and to high frequency harmonics measurements. Additionally to the well known wavelet filters we introduce near perfect reconstruction filter banks. The simulation results indicate that these filter banks are a good choice for classification of power quality disturbances, especially in the presence of noise and for high frequency harmonics measurements


Sign in / Sign up

Export Citation Format

Share Document