total squared curvature
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

2016 ◽  
Vol 25 (06) ◽  
pp. 1650036 ◽  
Author(s):  
Chiara Oberti ◽  
Renzo L. Ricca

A comprehensive study of geometric and topological properties of torus knots and unknots is presented. Torus knots/unknots are particularly symmetric, closed, space curves, that wrap the surface of a mathematical torus a number of times in the longitudinal and meridian direction. By using a standard parametrization, new results on local and global properties are found. In particular, we demonstrate the existence of inflection points for a given critical aspect ratio, determine the location and prescribe the regularization condition to remove the local singularity associated with torsion. Since to first approximation total length grows linearly with the number of coils, its nondimensional counterpart is proportional to the topological crossing number of the knot type. We analyze several global geometric quantities, such as total curvature, writhing number, total torsion, and geometric ‘energies’ given by total squared curvature and torsion, in relation to knot complexity measured by the winding number. We conclude with a brief presentation of research topics, where geometric and topological information on torus knots/unknots finds useful application.


Author(s):  
L. Giomi ◽  
L. Mahadevan

In mathematics, the classical Plateau problem consists of finding the surface of least area that spans a given rigid boundary curve. A physical realization of the problem is obtained by dipping a stiff wire frame of some given shape in soapy water and then removing it; the shape of the spanning soap film is a solution to the Plateau problem. But what happens if a soap film spans a loop of inextensible but flexible wire? We consider this simple query that couples Plateau's problem to Euler's Elastica : a special class of twist-free curves of given length that minimize their total squared curvature energy. The natural marriage of two of the oldest geometrical problems linking physics and mathematics leads to a quest for the shape of a minimal surface bounded by an elastic line: the Euler–Plateau problem. We use a combination of simple physical experiments with soap films that span soft filaments and asymptotic analysis combined with numerical simulations to explore some of the richness of the shapes that result. Our study raises questions of intrinsic interest in geometry and its natural links to a range of disciplines, including materials science, polymer physics, architecture and even art.


1998 ◽  
Vol 40 (2) ◽  
pp. 265-272 ◽  
Author(s):  
Manuel Barros

AbstractWe use the principle of symmetric criticality to connect the Willmore variational problem for surfaces in a warped product space with base a circle, and the free elastica variational problem for curves on its fiber. In addition we obtain a rational oneparameter family of closed helices in the anti De Sitter 3-space which are critical points of the total squared curvature functional. This means they are free elasticae. Also they are spacelike; this allows us to construct a corresponding family of spacelike Willmore tori in a certain kind of spacetime close to the Robertson-Walker spaces.


Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 293-305 ◽  
Author(s):  
W. H. F. Smith ◽  
P. Wessel

A gridding method commonly called minimum curvature is widely used in the earth sciences. The method interpolates the data to be gridded with a surface having continuous second derivatives and minimal total squared curvature. The minimum‐curvature surface has an analogy in elastic plate flexure and approximates the shape adopted by a thin plate flexed to pass through the data points. Minimum‐curvature surfaces may have large oscillations and extraneous inflection points which make them unsuitable for gridding in many of the applications where they are commonly used. These extraneous inflection points can be eliminated by adding tension to the elastic‐plate flexure equation. It is straightforward to generalize minimum‐curvature gridding algorithms to include a tension parameter; the same system of equations must be solved in either case and only the relative weights of the coefficients change. Therefore, solutions under tension require no more computational effort than minimum‐curvature solutions, and any algorithm which can solve the minimum‐curvature equations can solve the more general system. We give common geologic examples where minimum‐curvature gridding produces erroneous results but gridding with tension yields a good solution. We also outline how to improve the convergence of an iterative method of solution for the gridding equations.


1984 ◽  
Vol 20 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Joel Langer ◽  
David A. Singer

Sign in / Sign up

Export Citation Format

Share Document