Gridding with continuous curvature splines in tension

Geophysics ◽  
1990 ◽  
Vol 55 (3) ◽  
pp. 293-305 ◽  
Author(s):  
W. H. F. Smith ◽  
P. Wessel

A gridding method commonly called minimum curvature is widely used in the earth sciences. The method interpolates the data to be gridded with a surface having continuous second derivatives and minimal total squared curvature. The minimum‐curvature surface has an analogy in elastic plate flexure and approximates the shape adopted by a thin plate flexed to pass through the data points. Minimum‐curvature surfaces may have large oscillations and extraneous inflection points which make them unsuitable for gridding in many of the applications where they are commonly used. These extraneous inflection points can be eliminated by adding tension to the elastic‐plate flexure equation. It is straightforward to generalize minimum‐curvature gridding algorithms to include a tension parameter; the same system of equations must be solved in either case and only the relative weights of the coefficients change. Therefore, solutions under tension require no more computational effort than minimum‐curvature solutions, and any algorithm which can solve the minimum‐curvature equations can solve the more general system. We give common geologic examples where minimum‐curvature gridding produces erroneous results but gridding with tension yields a good solution. We also outline how to improve the convergence of an iterative method of solution for the gridding equations.

2005 ◽  
Vol 73 (4) ◽  
pp. 525-535 ◽  
Author(s):  
Xiangqiao Yan

This paper presents a numerical approach to modeling a general system containing multiple interacting cracks and voids in an infinite elastic plate under remote uniform stresses. By extending Bueckner’s principle suited for a crack to a general system containing multiple interacting cracks and voids, the original problem is divided into a homogeneous problem (the one without cracks and voids) subjected to remote loads and a multiple void-crack problem in an unloaded body with applied tractions on the surfaces of cracks and voids. Thus the results in terms of the stress intensity factors (SIFs) can be obtained by considering the latter problem, which is analyzed easily by means of the displacement discontinuity method with crack-tip elements (a boundary element method) proposed recently by the author. Test examples are included to illustrate that the numerical approach is very simple and effective for analyzing multiple crack/void problems in an infinite elastic plate. Specifically, the numerical approach is used to study the microdefect-finite main crack linear elastic interaction. In addition, complex crack problems in infinite/finite plate are examined to test further the accuracy and robustness of the boundary element method.


Author(s):  
Fengtao Bai ◽  
Qi Guo ◽  
Kyle Root ◽  
Clay Naito ◽  
Spencer Quiel

Tunnels are a critical component of our transportation infrastructure, and unexpected damage to a tunnel can significantly and adversely impact the functionality of a transportation network. Tunnel systems are vulnerable to potential threats of intentional and accidental blast events because of their relatively unrestricted public access. These events can lead to spalling and breach of the tunnel liner which, depending on the surrounding media, can result in local damage and progressive collapse of the tunnel. Current approaches for evaluating blast-induced damage to a tunnel liner either require significant computational effort or oversimplification such that accurate spatial distributions of damage cannot be obtained. This study presents an effective approach to predict and map the damage to a reinforced concrete liner of a roadway tunnel from various explosive threat sizes and tunnel geometries. A literature review of existing studies is conducted, and potential scenarios of blast events are examined with varying charge position and size. Rectangular, horseshoe, and circular tunnel geometries, each with the same traffic throughput, are evaluated. An efficient analytical approach to determine the spatial distribution of blast-induced spall and breach damage is presented and shows good agreement with numerical models analyzed in LS-DYNA. The proposed approach is then used to examine the relationship between increasing blast hazard intensity and the extent of spall and breach damage. Inflection points in this relationship can be used to identify hazard levels at which a progressive collapse evaluation would be warranted.


1989 ◽  
Vol 56 (4) ◽  
pp. 910-917 ◽  
Author(s):  
Yoon Young Kim ◽  
Charles R. Steele

The present work is a part of the effort toward the development of an efficient method of solution to handle general nonsymmetric time-harmonic end conditions in a cylinder with a traction-free lateral surface. Previously, Kim and Steele (1989a) develop an approach for the general axisymmetric case, which utilizes the well-known uncoupled wave solutions for a mixed lateral wall condition. For the case of a traction-free lateral wall, the uncoupled wave solutions provide: (1) a convenient set of basis functions and (2) approximations for the relation between end stress and displacement which are asymptotically valid for high mode index numbers. The decay rate with the distance from the end is, however, highly dependent on the lateral wall conditions. The present objective was to demonstrate that the uncoupled solutions of the nonsymmetric waves discussed by Kim (1989), which satisfy certain mixed lateral wall conditions, can be utilized in an analogous manner for the asymptotic analysis of the traction-free case. Results for the end displacement/stress due to various end conditions, computed by the present method and by a more standard collocation method, were compared. The present method was found to reduce the computational effort by orders of magnitude.


2014 ◽  
Vol 200 (2) ◽  
pp. 1012-1028 ◽  
Author(s):  
Emmanuel S. Garcia ◽  
David T. Sandwell ◽  
Karen M. Luttrell

Geophysics ◽  
1974 ◽  
Vol 39 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Ian C. Briggs

Machine contouring must not introduce information which is not present in the data. The one‐dimensional spline fit has well defined smoothness properties. These are duplicated for two‐dimensional interpolation in this paper, by solving the corresponding differential equation. Finite difference equations are deduced from a principle of minimum total curvature, and an iterative method of solution is outlined. Observations do not have to lie on a regular grid. Gravity and aeromagnetic surveys provide examples which compare favorably with the work of draftsmen.


1953 ◽  
Vol 20 (1) ◽  
pp. 77-81
Author(s):  
S. Woinowsky-Krieger

Abstract A general method of solution is given in this paper for the problem of bending of a wedge-shaped thin elastic plate with arbitrary boundary conditions on the radial edges in the case of a single load. The solution is carried out for a plate with clamped edges and a single load on the bisector radius of the plate. Stress distribution along the edges is shown and the behavior of the solution near the corner point is discussed for several opening angles of the plate.


2016 ◽  
Vol 25 (06) ◽  
pp. 1650036 ◽  
Author(s):  
Chiara Oberti ◽  
Renzo L. Ricca

A comprehensive study of geometric and topological properties of torus knots and unknots is presented. Torus knots/unknots are particularly symmetric, closed, space curves, that wrap the surface of a mathematical torus a number of times in the longitudinal and meridian direction. By using a standard parametrization, new results on local and global properties are found. In particular, we demonstrate the existence of inflection points for a given critical aspect ratio, determine the location and prescribe the regularization condition to remove the local singularity associated with torsion. Since to first approximation total length grows linearly with the number of coils, its nondimensional counterpart is proportional to the topological crossing number of the knot type. We analyze several global geometric quantities, such as total curvature, writhing number, total torsion, and geometric ‘energies’ given by total squared curvature and torsion, in relation to knot complexity measured by the winding number. We conclude with a brief presentation of research topics, where geometric and topological information on torus knots/unknots finds useful application.


Author(s):  
James C. G. Walker

In Chapter 7 I showed how much computational effort could be avoided in a system consisting of a chain of identical equations each coupled just to its neighboring equations. Such systems arise in linear diffusion and heat conduction problems. It is possible to save computational effort because the sleq array that describes the system of simultaneous linear algebraic equations that must be solved has elements different from zero on and immediately adjacent to the diagonal only. This general approach works also for one-dimensional diffusion problems involving several interacting species. In such a system the concentration of a particular species in a particular reservoir is coupled to the concentrations of other species in the same reservoir by reactions between species and is coupled also to adjacent reservoirs by transport between reservoirs. If the differential equations that describe such a system are arranged in appropriate order, with the equations for each species in a given reservoir followed by the equations for each species in the next reservoir and so on, the sleq array still will have elements different from zero close to the diagonal only. All the nonzero elements lie no farther from the diagonal than the number of species. More distant elements are zero. Again, much computation can be eliminated by taking advantage of this pattern. I will show how to solve such a system in this chapter, introducing two new solution subroutines, GAUSSND and SLOPERND, to replace GAUSSD and SLOPERD. I shall apply the new method of solution to a problem of early diagenesis in carbonate sediments. I calculate the properties of the pore fluid in the sediment as a function of depth and time. The different reservoirs are successive layers of sediment at increasing depth. The fluid's composition is affected by diffusion between sedimentary layers and between the top layer and the overlying seawater, the oxidation of organic carbon, and the dissolution or precipitation of calcium carbonate. Because I assume that the rate of oxidation of organic carbon decreases exponentially with increasing depth, there must be more chemical activity at shallow depths in the sediment than at great depths.


1958 ◽  
Vol 25 (1) ◽  
pp. 129-135
Author(s):  
E. M. Saleme

Abstract This paper contains an exact two-dimensional solution in series form for the stresses and displacements around a circular inclusion perfectly bonded to a semi-infinite elastic plate. At infinity the plate is assumed to be in a state of uniform tension parallel to the straight boundary. It should be emphasized, however, that the method of solution presented may be applied to other types of loading. Numerical results are given for the variation along the axis of symmetry of the normal stress which is parallel to the straight boundary, for a given geometry, and various ratios of the elastic moduli of the plate and the inclusion. Finally, the known solutions corresponding to an infinite plate with a circular inclusion and to a semi-infinite plate with a circular hole are obtained as limiting cases.


Sign in / Sign up

Export Citation Format

Share Document