iron oxidizers
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 6)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Vol 9 (7) ◽  
pp. 1368
Author(s):  
Qianqian Li ◽  
Rebecca E. Cooper ◽  
Carl-Eric Wegner ◽  
Martin Taubert ◽  
Nico Jehmlich ◽  
...  

Pelagic aggregates function as biological carbon pumps for transporting fixed organic carbon to sediments. In iron-rich (ferruginous) lakes, photoferrotrophic and chemolithoautotrophic bacteria contribute to CO2 fixation by oxidizing reduced iron, leading to the formation of iron-rich pelagic aggregates (iron snow). The significance of iron oxidizers in carbon fixation, their general role in iron snow functioning and the flow of carbon within iron snow is still unclear. Here, we combined a two-year metatranscriptome analysis of iron snow collected from an acidic lake with protein-based stable isotope probing to determine general metabolic activities and to trace 13CO2 incorporation in iron snow over time under oxic and anoxic conditions. mRNA-derived metatranscriptome of iron snow identified four key players (Leptospirillum, Ferrovum, Acidithrix, Acidiphilium) with relative abundances (59.6–85.7%) encoding ecologically relevant pathways, including carbon fixation and polysaccharide biosynthesis. No transcriptional activity for carbon fixation from archaea or eukaryotes was detected. 13CO2 incorporation studies identified active chemolithoautotroph Ferrovum under both conditions. Only 1.0–5.3% relative 13C abundances were found in heterotrophic Acidiphilium and Acidocella under oxic conditions. These data show that iron oxidizers play an important role in CO2 fixation, but the majority of fixed C will be directly transported to the sediment without feeding heterotrophs in the water column in acidic ferruginous lakes.


2020 ◽  
Author(s):  
Sean M. McAllister ◽  
Rebecca Vandzura ◽  
Jessica L. Keffer ◽  
Shawn W. Polson ◽  
Clara S. Chan

AbstractIn principle, iron oxidation can fuel significant primary productivity and nutrient cycling in dark environments such as the deep sea. However, we have an extremely limited understanding of the ecology of iron-based ecosystems, and thus the linkages between iron oxidation, carbon cycling, and nitrate reduction. Here we investigate iron microbial mats from hydrothermal vents at Lōʻihi Seamount, Hawaiʻi, using genome-resolved metagenomics and metatranscriptomics to reconstruct potential microbial roles and interactions. Our results show that the aerobic iron-oxidizing Zetaproteobacteria are the primary producers, concentrated at the oxic mat surface. Their fixed carbon supports heterotrophs deeper in the mat, notably the second most abundant organism, Candidatus Ferristratum sp. (uncultivated gen. nov.) from the uncharacterized DTB120 phylum. Candidatus Ferristratum sp., described using nine high-quality metagenome-assembled genomes with similar distributions of genes, expressed nitrate reduction genes narGH and the iron oxidation gene cyc2 in situ and in response to Fe(II) in a shipboard incubation, suggesting it is an anaerobic nitrate-reducing iron oxidizer. Candidatus Ferristratum sp. lacks a full denitrification pathway, relying on Zetaproteobacteria to remove intermediates like nitrite. Thus, at Lōʻihi, anaerobic iron oxidizers coexist with and are dependent on aerobic iron oxidizers. In total, our work shows how key community members work together to connect iron oxidation with carbon and nitrogen cycling, thus driving the biogeochemistry of exported fluids.


mSystems ◽  
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Sean M. McAllister ◽  
Shawn W. Polson ◽  
David A. Butterfield ◽  
Brian T. Glazer ◽  
Jason B. Sylvan ◽  
...  

ABSTRACT Zetaproteobacteria create extensive iron (Fe) oxide mats at marine hydrothermal vents, making them an ideal model for microbial Fe oxidation at circumneutral pH. Comparison of neutrophilic Fe oxidizer isolate genomes has revealed a hypothetical Fe oxidation pathway, featuring a homolog of the Fe oxidase Cyc2 from Acidithiobacillus ferrooxidans. However, Cyc2 function is not well verified in neutrophilic Fe oxidizers, particularly in Fe-oxidizing environments. Toward this, we analyzed genomes and metatranscriptomes of Zetaproteobacteria, using 53 new high-quality metagenome-assembled genomes reconstructed from Fe mats at Mid-Atlantic Ridge, Mariana Backarc, and Loihi Seamount (Hawaii) hydrothermal vents. Phylogenetic analysis demonstrated conservation of Cyc2 sequences among most neutrophilic Fe oxidizers, suggesting a common function. We confirmed the widespread distribution of cyc2 and other model Fe oxidation pathway genes across all represented Zetaproteobacteria lineages. High expression of these genes was observed in diverse Zetaproteobacteria under multiple environmental conditions and in incubations. The putative Fe oxidase gene cyc2 was highly expressed in situ, often as the top expressed gene. The cyc2 gene showed increased expression in Fe(II)-amended incubations, with corresponding increases in carbon fixation and central metabolism gene expression. These results substantiate the Cyc2-based Fe oxidation pathway in neutrophiles and demonstrate its significance in marine Fe-mineralizing environments. IMPORTANCE Iron oxides are important components of our soil, water supplies, and ecosystems, as they sequester nutrients, carbon, and metals. Microorganisms can form iron oxides, but it is unclear whether this is a significant mechanism in the environment. Unlike other major microbial energy metabolisms, there is no marker gene for iron oxidation, hindering our ability to track these microbes. Here, we investigate a promising possible iron oxidation gene, cyc2, in iron-rich hydrothermal vents, where iron-oxidizing microbes dominate. We pieced together diverse Zetaproteobacteria genomes, compared these genomes, and analyzed expression of cyc2 and other hypothetical iron oxidation genes. We show that cyc2 is widespread among iron oxidizers and is highly expressed and potentially regulated, making it a good marker for the capacity for iron oxidation and potentially a marker for activity. These findings will help us understand and potentially quantify the impacts of neutrophilic iron oxidizers in a wide variety of marine and terrestrial environments.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Malin Bomberg ◽  
Jarno Mäkinen ◽  
Marja Salo ◽  
Päivi Kinnunen

Microbial communities of iron-rich water in the Pyhäsalmi mine, Finland, were investigated with high-throughput amplicon sequencing and qPCR targeting bacteria, archaea, and fungi. In addition, the abundance ofLeptospirillumandAcidithiobacilluswas assessed with genus-specific qPCR assays, and enrichment cultures targeting aerobic ferrous iron oxidizers and ferric iron reducers were established. The acidic (pH 1.4–2.3) mine water collected from 240 m, 500 m, and 600 m depth from within the mine had a high microbial diversity consisting of 63-114 bacterial, 10-13 archaeal, and 104-117 fungal genera. The most abundant microorganisms in the mine water were typical acid mine drainage (AMD) taxa, such as acidophilic, iron-oxidizingLeptospirillum,Acidiphilum,Acidithiobacillus,Ferrovum, andThermoplasma. The fungi belonged mostly to the phylum Ascomycetes, although a great part of the fungal sequences remained unclassified. The number of archaeal 16S rRNA genes in the mine water was between 0.3 and 1.2 × 107copies mL−1in the samples from 500 m and 600 m, but only 3.9 × 103at 240 m and archaea were in general not enriched in cultures. The number of fungal 5.8S rRNA genes was high only in the mine water from 500 m and 600 m, where 0.2–3.4 × 104spore equivalents mL−1were detected. A high number ofLeptospirillum16S rRNA genes, 0.6–1.6 × 1010copies mL−1, were detected at 500 m and 600 m depth and in cultures containing ferrous iron, showing the importance of iron oxidizers in this environment. The abundance of bacteria in general was between 103and 10616S rRNA gene copies mL−1. Our results showed a high microbial diversity in the acid- and iron-impacted waters of the Pyhäsalmi mine, whereLeptospirillumbacteria were especially prominent. These iron oxidizers are also the main nitrogen-fixing microorganisms in this ecosystem.


2018 ◽  
Vol 9 ◽  
Author(s):  
Arda Gülay ◽  
Yağmur Çekiç ◽  
Sanin Musovic ◽  
Hans-Jørgen Albrechtsen ◽  
Barth F. Smets

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Stephan Christel ◽  
Malte Herold ◽  
Sören Bellenberg ◽  
Mohamed El Hajjami ◽  
Antoine Buetti-Dinh ◽  
...  

ABSTRACT Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647 T (here referred to as Leptospirillum ferriphilum T ) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum T obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS 2 ). Adaptations of Leptospirillum ferriphilum T to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced. IMPORTANCE Leptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum T coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilum T for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.


2017 ◽  
Vol 314 (3) ◽  
pp. 1939-1946 ◽  
Author(s):  
Qian Li ◽  
Jing Sun ◽  
Dexin Ding ◽  
Qingliang Wang ◽  
Wenge Shi ◽  
...  

Geobiology ◽  
2016 ◽  
Vol 14 (5) ◽  
pp. 499-508 ◽  
Author(s):  
E. K. Field ◽  
S. Kato ◽  
A. J. Findlay ◽  
D. J. MacDonald ◽  
B. K. Chiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document