nuclear resonance vibrational spectroscopy
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 8)

H-INDEX

23
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Filipe Folgosa ◽  
Vladimir Pelmenschikov ◽  
Matthias Keck ◽  
Christian Lorent ◽  
Yoshitaka Yoda ◽  
...  

<p>NO and O<sub>2</sub> are detoxified in many organisms using flavodiiron proteins (FDPs). The exact coordination of the iron centre in the active site of these enzymes remains unclear despite numerous structural studies. Here, we used <sup>57</sup>Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the iron-ligand interactions in <i>Escherichia coli</i> FDP. This data combined with density functional theory (DFT) and <sup>57</sup>Fe Mössbauer spectroscopy indicate that the oxidised form of FDP contains a dihydroxo-diferric Fe(III)–(µOH<sup>–</sup>)<sub>2</sub>–Fe(III) active site, while its reduction gives rise to a monohydroxo-diferrous Fe(II)–(µOH<sup>–</sup>)–Fe(II) site upon elimination of one bridging OH<sup>–</sup> ligand, thereby providing an open coordination site for NO binding. Prolonged NRVS data collection of the oxidised FDP resulted in photoreduction and formation of a partially reduced diiron center with two bridging hydroxyl ligands. These results have crucial implications for studying and understanding the mechanism of FDP as well as other non-haem diiron enzymes.</p>


2020 ◽  
Author(s):  
Filipe Folgosa ◽  
Vladimir Pelmenschikov ◽  
Matthias Keck ◽  
Christian Lorent ◽  
Yoshitaka Yoda ◽  
...  

<p>NO and O<sub>2</sub> are detoxified in many organisms using flavodiiron proteins (FDPs). The exact coordination of the iron centre in the active site of these enzymes remains unclear despite numerous structural studies. Here, we used <sup>57</sup>Fe nuclear resonance vibrational spectroscopy (NRVS) to probe the iron-ligand interactions in <i>Escherichia coli</i> FDP. This data combined with density functional theory (DFT) and <sup>57</sup>Fe Mössbauer spectroscopy indicate that the oxidised form of FDP contains a dihydroxo-diferric Fe(III)–(µOH<sup>–</sup>)<sub>2</sub>–Fe(III) active site, while its reduction gives rise to a monohydroxo-diferrous Fe(II)–(µOH<sup>–</sup>)–Fe(II) site upon elimination of one bridging OH<sup>–</sup> ligand, thereby providing an open coordination site for NO binding. Prolonged NRVS data collection of the oxidised FDP resulted in photoreduction and formation of a partially reduced diiron center with two bridging hydroxyl ligands. These results have crucial implications for studying and understanding the mechanism of FDP as well as other non-haem diiron enzymes.</p>


2019 ◽  
Vol 10 (32) ◽  
pp. 7535-7541
Author(s):  
Florian Wittkamp ◽  
Nakul Mishra ◽  
Hongxin Wang ◽  
Hans-Christian Wille ◽  
René Steinbrügge ◽  
...  

Can sulfur-to-tellurium exchange serve as a method to understand iron–sulfur clusters of enzymatic systems?


2018 ◽  
Vol 57 (49) ◽  
pp. 16010-16014 ◽  
Author(s):  
Andrew C. Weitz ◽  
Ethan A. Hill ◽  
Victoria F. Oswald ◽  
Emile L. Bominaar ◽  
Andrew S. Borovik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document