motor cortex neuron
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Jennifer K Lee ◽  
Polan T Santos ◽  
May W Chen ◽  
Caitlin E O’Brien ◽  
Ewa Kulikowicz ◽  
...  

Abstract Neonatal hypoxia-ischemia (HI) causes white matter injury that is not fully prevented by therapeutic hypothermia. Adjuvant treatments are needed. We compared myelination in different piglet white matter regions. We then tested whether oleuropein (OLE) improves neuroprotection in 2- to 4-day-old piglets randomized to undergo HI or sham procedure and OLE or vehicle administration beginning at 15 minutes. All groups received overnight hypothermia and rewarming. Injury in the subcortical white matter, corpus callosum, internal capsule, putamen, and motor cortex gray matter was assessed 1 day later. At baseline, piglets had greater subcortical myelination than in corpus callosum. Hypothermic HI piglets had scant injury in putamen and cerebral cortex. However, hypothermia alone did not prevent the loss of subcortical myelinating oligodendrocytes or the reduction in subcortical myelin density after HI. Combining OLE with hypothermia improved post-HI subcortical white matter protection by preserving myelinating oligodendrocytes, myelin density, and oligodendrocyte markers. Corpus callosum and internal capsule showed little HI injury after hypothermia, and OLE accordingly had minimal effect. OLE did not affect putamen or motor cortex neuron counts. Thus, OLE combined with hypothermia protected subcortical white matter after HI. As an adjuvant to hypothermia, OLE may subacutely improve regional white matter protection after HI.


2005 ◽  
Vol 94 (4) ◽  
pp. 2959-2969 ◽  
Author(s):  
Boris I. Prilutsky ◽  
Mikhail G. Sirota ◽  
Robert J. Gregor ◽  
Irina N. Beloozerova

Recent progress in the understanding of motor cortex function has been achieved primarily by simultaneously recording motor cortex neuron activity and the movement kinematics of the corresponding limb. We have expanded this approach by combining high-quality cortical single-unit activity recordings with synchronized recordings of full-body kinematics and kinetics in the freely behaving cat. The method is illustrated by selected results obtained from two cats tested while walking on a flat surface. Using this method, the activity of 43 pyramidal tract neurons (PTNs) was recorded, averaged over 10 bins of a locomotion cycle, and compared with full-body mechanics by means of principal component and multivariate linear regression analyses. Patterns of 24 PTNs (56%) and 219 biomechanical variables (73%) were classified into just four groups of inter-correlated variables that accounted for 91% of the total variance, indicating that many of the recorded variables had similar patterns. The ensemble activity of different groups of two to eight PTNs accurately predicted the 10-bin patterns of all biomechanical variables (neural decoding) and vice versa; different small groups of mechanical variables accurately predicted the 10-bin pattern of each PTN (neural encoding). We conclude that comparison of motor cortex activity with full-body biomechanics may be a useful tool in further elucidating the function of the motor cortex.


1997 ◽  
Vol 27 (5) ◽  
pp. 559-561
Author(s):  
Yu. S. Mednikova ◽  
F. V. Kopytova ◽  
T. N. Dish

Sign in / Sign up

Export Citation Format

Share Document