white matter injury
Recently Published Documents


TOTAL DOCUMENTS

765
(FIVE YEARS 260)

H-INDEX

65
(FIVE YEARS 8)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Minchul Kim ◽  
Kyu Sung Choi ◽  
Ryoo Chang Hyun ◽  
Inpyeong Hwang ◽  
Tae Jin Yun ◽  
...  

AbstractTo compare free-water corrected diffusion tensor imaging (DTI) measures in the normal-appearing periependymal area between AQP4-IgG-seropositive NMOSD and multiple sclerosis (MS) to investigate occult pathophysiology. This prospective study included 44 patients (mean age, 39.52 ± 11.90 years; 14 men) with AQP4-IgG-seropositive NMOSD (n = 20) and MS (n = 24) who underwent DTI between April 2014 and April 2020. Based on free-water corrected DTI measures obtained from normal-appearing periependymal voxels of (1) lateral ventricles and (2) the 3rd and 4th ventricles as dependent variables, MANCOVA was conducted to compare the two groups, using clinical variables as covariates. A significant difference was found between AQP4-IgG-seropositive NMOSD and MS in the 3rd and 4th periependymal voxels (λ = 0.462, P = 0.001). Fractional anisotropy, axial diffusivity was significantly decreased and radial diffusivity was increased in AQP4-IgG-seropositive NMOSD in post-hoc analysis, compared with MS (F = 27.616, P < 0.001, F = 7.336, P = 0.011, and F = 5.800, P = 0.022, respectively). Free-water corrected DTI measures differ in the periependymal area surrounding the diencephalon and brain stem/cerebellum between MS and NMOSD, which may suggest occult white matter injury in areas with distribution of AQP-4 in NMOSD.


Author(s):  
Yafeng Wang ◽  
Yiran Xu ◽  
Kai Zhou ◽  
Shan Zhang ◽  
Yong Wang ◽  
...  

Abstract Radiotherapy is an effective tool in the treatment of malignant brain tumors, but irradiation-induced late-onset toxicity remains a major problem. The purpose of this study was to investigate if genetic inhibition of autophagy has an impact on subcortical white matter development in the juvenile mouse brain after irradiation. Ten-day-old selective neural Atg7 knockout (KO) mice and wild-type (WT) littermates were subjected to a single 6-Gy dose of whole-brain irradiation and evaluated at 5 days after irradiation. Neural Atg7 deficiency partially prevented myelin disruption compared to the WT mice after irradiation, as indicated by myelin basic protein staining. Irradiation induced oligodendrocyte progenitor cell loss in the subcortical white matter, and Atg7 deficiency partly prevented this. There was no significant change between the KO and WT mice in the number of microglia and astrocytes in the subcortical white matter after irradiation. Transcriptome analysis showed that the GO mitochondrial gene expression pathway was significantly enriched in the differentially expressed genes between the KO and WT group after irradiation. Compared with WT mice, expression of the mitochondrial fusion protein OPA1 and phosphorylation of the mitochondrial fission protein DRP1 (P-DRP1) were dramatically decreased in KO mice under physiological conditions. The protein levels of OPA1and P-DRP1 showed no differences in WT mice between the non-irradiated group and the irradiated group but had remarkably increased levels in the KO mice after irradiation. These results indicate that inhibition of autophagy reduces irradiation-induced subcortical white matter injury not by reducing inflammation, but by increasing mitochondrial fusion and inhibiting mitochondrial fission.


2021 ◽  
pp. 088307382110260
Author(s):  
Nihaal Reddy ◽  
Mary Doyle ◽  
Prasad Hanagandi ◽  
Ajay Taranath ◽  
Hisham Dahmoush ◽  
...  

Aim: Periventricular leukomalacia (PVL) is a term reserved to describe white matter injury in the premature brain. In this review article, the authors highlight the common and rare pathologies mimicking the chronic stage of PVL and propose practical clinico-radiological criteria that would aid in diagnosis and management. Methods and Results: The authors first describe the typical brain MRI (magnetic resonance imaging) features of PVL. Based on their clinical presentation, pathologic entities and their neuroimaging findings were clustered into distinct categories. Three clinical subgroups were identified: healthy children, children with stable/nonprogressive neurological disorder, and those with progressive neurological disorder. The neuroradiological discriminators are described in each subgroup with relevant differential diagnoses. The mimics were broadly classified into normal variants, acquired, and inherited disorders. Conclusions: The term “PVL” should be used appropriately as it reflects its pathomechanism. The phrase “white matter injury of prematurity” or “brain injury of prematurity” is more specific. Discrepancies in imaging and clinical presentation must be tread with caution and warrant further investigations to exclude other possibilities.


2021 ◽  
Author(s):  
Benjamin A. Lear ◽  
Christopher A. Lear ◽  
Simerdeep K. Dhillon ◽  
Joanne O. Davidson ◽  
Laura Bennet ◽  
...  

Preterm birth continues to be associated with neurodevelopmental problems including cerebral palsy. Cystic white matter injury is still the major neuropathology underlying cerebral palsy, affecting 1-3% of preterm infants. Although rates have gradually fallen over time, the pathogenesis and evolution of cystic white matter injury are still poorly understood. Hypoxia-ischemia (HI) remains an important contributor yet there is no established treatment to prevent injury. Clinically, serial ultrasound and magnetic resonance imaging studies typically show delayed development of cystic lesions 2 to 4 weeks after birth. This raises the important and unresolved question as to whether this represents slow evolution of injury occurring around the time of birth, or repeated injury over many weeks after birth. There is increasing evidence that tertiary injury after HI can contribute to impairment of white and grey matter maturation. In the present review, we discuss preclinical evidence that severe, cystic white matter injury can evolve for many weeks after acute HI and is associated with microglia activity. This suggests the intriguing hypothesis that the tertiary phase of injury is not as subtle as often thought and that there may be a window of therapeutic opportunity for one to two weeks after hypoxic-ischemic injury to prevent delayed cystic lesions and so further reduce the risk of cerebral palsy after preterm birth.


Author(s):  
Shalin A. Parekh ◽  
Stephany M. Cox ◽  
A. James Barkovich ◽  
Vann Chau ◽  
Martina A. Steurer ◽  
...  

AbstractPoor and asymmetric fetal growth have been associated with neonatal brain injury (BI) and worse neurodevelopmental outcomes (NDO) in the growth-restricted population due to placental insufficiency. We tested the hypothesis that postnatal markers of fetal growth (birthweight (BW), head circumference (HC), and head to body symmetry) are associated with preoperative white matter injury (WMI) and NDO in infants with single ventricle physiology (SVP) and d-transposition of great arteries (TGA). 173 term newborns (106 TGA; 67 SVP) at two sites had pre-operative brain MRI to assess for WMI and measures of microstructural brain development. NDO was assessed at 30 months with the Bayley Scale of Infant Development-II (n = 69). We tested the association between growth parameters at birth with the primary outcome of WMI on the pre-operative brain MRI. Secondary outcomes included measures of NDO. Newborns with TGA were more likely to have growth asymmetry with smaller heads relative to weight while SVP newborns were symmetrically small. There was no association between BW, HC or asymmetry and WMI on preoperative brain MRI or with measures of microstructural brain development. Similarly, growth parameters at birth were not associated with NDO at 30 months. In a multivariable model only cardiac lesion and site were associated with NDO. Unlike other high-risk infant populations, postnatal markers of fetal growth including head to body asymmetry that is common in TGA is not associated with brain injury or NDO. Lesion type appears to play a more important role in NDO in CHD.


Sign in / Sign up

Export Citation Format

Share Document