freely behaving
Recently Published Documents


TOTAL DOCUMENTS

499
(FIVE YEARS 146)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Furong Ju ◽  
Wenling Jian ◽  
Yaning Han ◽  
Tianwen Huang ◽  
Jin Ke ◽  
...  

The spinal cord is critical to integrating peripheral information under sensory-guided motor behaviors in health and disease. However, the cellular activity underlie spinal cord function in freely behaving animals is not clear. Here, we developed a new method for imaging the spinal cord at cellular and subcellular resolution over weeks under naturalistic conditions. The method involves an improved surgery to reduce spinal movement, and the installation of a miniaturized two-photon microscope to obtain high-resolution imaging in moving mice. In vivo calcium imaging demonstrated that dorsal horn neurons show a sensorimotor program-dependent synchronization and heterogeneity under distinct cutaneous stimuli in behaving mice. The long-term imaging of sensory neurons revealed that in the spinal cord, healthy mice demonstrated stereotyped responses. However, in a neuropathic pain model, plasticity changes and neuronal sensitization were observed. We provide a practical method to study the function of spinal cord on sensory perception and disorders in freely behaving mice.


2022 ◽  
Author(s):  
Armando G Salinas ◽  
Jeong Oen Lee ◽  
Shana M Augustin ◽  
Shiliang Zhang ◽  
Tommaso Patriarchi ◽  
...  

Fast-scan cyclic voltammetry (FSCV) is an electrochemical method used to detect dopamine on a subsecond time scale. Recordings using FSCV in freely behaving animals revolutionized the study of behaviors associated with motivation and learning. Despite this advance, FSCV cannot distinguish between catecholamines, which limits its use to brain regions where dopamine is the predominant neurotransmitter. It has also been difficult to detect dopamine in vivo in some striatal subregions with FSCV. Recently, fluorescent biosensors for dopamine were developed, allowing for discrimination between catecholamines. However, the performance of these biosensors relative to FSCV has not been determined. Thus, we compared fluorescent photometry responses of the dopamine biosensor, dLight, with FSCV. We also used dLight photometry to assess changes in tonic and phasic dopamine, which has not been possible with FSCV. Finally, we examined dopamine dynamics during Pavlovian conditioning in striatal subregions, including the dorsolateral striatum where dopamine measurements are challenging with FSCV.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009618
Author(s):  
Shanel C. Pickard ◽  
David J. Bertsch ◽  
Zoe Le Garrec ◽  
Roy E. Ritzmann ◽  
Roger D. Quinn ◽  
...  

How we interact with our environment largely depends on both the external cues presented by our surroundings and the internal state from within. Internal states are the ever-changing physiological conditions that communicate the immediate survival needs and motivate the animal to behaviorally fulfill them. Satiety level constitutes such a state, and therefore has a dynamic influence on the output behaviors of an animal. In predatory insects like the praying mantis, hunting tactics, grooming, and mating have been shown to change hierarchical organization of behaviors depending on satiety. Here, we analyze behavior sequences of freely hunting praying mantises (Tenodera sinensis) to explore potential differences in sequential patterning of behavior as a correlate of satiety. First, our data supports previous work that showed starved praying mantises were not just more often attentive to prey, but also more often attentive to further prey. This was indicated by the increased time fraction spent in attentive bouts such as prey monitoring, head turns (to track prey), translations (closing the distance to the prey), and more strike attempts. With increasing satiety, praying mantises showed reduced time in these behaviors and exhibited them primarily towards close-proximity prey. Furthermore, our data demonstrates that during states of starvation, the praying mantis exhibits a stereotyped pattern of behavior that is highly motivated by prey capture. As satiety increased, the sequenced behaviors became more variable, indicating a shift away from the necessity of prey capture to more fluid presentations of behavior assembly.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marieke MB Hoekstra ◽  
Maxime Jan ◽  
Georgia Katsioudi ◽  
Yann Emmenegger ◽  
Paul Franken

In the mouse, Period-2 (Per2) expression in tissues peripheral to the suprachiasmatic nuclei (SCN) increases during sleep deprivation and at times of the day when animals are predominantly awake spontaneously, suggesting that the circadian sleep-wake distribution directly contributes to the daily rhythms in Per2. We found support for this hypothesis by recording sleep-wake state alongside PER2 bioluminescence in freely behaving mice, demonstrating that PER2 bioluminescence increases during spontaneous waking and decreases during sleep. The temporary reinstatement of PER2-bioluminescence rhythmicity in behaviorally arrhythmic SCN-lesioned mice submitted to daily recurring sleep deprivations substantiates our hypothesis. Mathematical modelling revealed that PER2 dynamics can be described by a damped harmonic oscillator driven by two forces: a sleep-wake-dependent force and a SCN-independent circadian force. Our work underscores the notion that in peripheral tissues the clock gene circuitry integrates sleep-wake information and could thereby contribute to behavioral adaptability to respond to homeostatic requirements.


2021 ◽  
pp. 074873042110628
Author(s):  
Blanca Martin-Burgos ◽  
Wanqi Wang ◽  
Ivana William ◽  
Selma Tir ◽  
Innus Mohammad ◽  
...  

Circadian rhythms are driven by daily oscillations of gene expression. An important tool for studying cellular and tissue circadian rhythms is the use of a gene reporter, such as bioluminescence from the reporter gene luciferase controlled by a rhythmically expressed gene of interest. Here we describe methods that allow measurement of circadian bioluminescence from a freely moving mouse housed in a standard cage. Using a LumiCycle In Vivo (Actimetrics), we determined conditions that allow detection of circadian rhythms of bioluminescence from the PER2 reporter, PER2::LUC, in freely behaving mice. The LumiCycle In Vivo applies a background subtraction that corrects for effects of room temperature on photomultiplier tube (PMT) output. We tested delivery of d-luciferin via a subcutaneous minipump and in the drinking water. We demonstrate spikes in bioluminescence associated with drinking bouts. Further, we demonstrate that a synthetic luciferase substrate, CycLuc1, can support circadian rhythms of bioluminescence, even when delivered at a lower concentration than d-luciferin, and can support longer-term studies. A small difference in phase of the PER2::LUC bioluminescence rhythms, with females phase leading males, can be detected with this technique. We share our analysis scripts and suggestions for further improvements in this method. This approach will be straightforward to apply to mice with tissue-specific reporters, allowing insights into responses of specific peripheral clocks to perturbations such as environmental or pharmacological manipulations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Venus N. Sherathiya ◽  
Michael D. Schaid ◽  
Jillian L. Seiler ◽  
Gabriela C. Lopez ◽  
Talia N. Lerner

AbstractFiber photometry (FP) is an adaptable method for recording in vivo neural activity in freely behaving animals. It has become a popular tool in neuroscience due to its ease of use, low cost, the ability to combine FP with freely moving behavior, among other advantages. However, analysis of FP data can be challenging for new users, especially those with a limited programming background. Here, we present Guided Photometry Analysis in Python (GuPPy), a free and open-source FP analysis tool. GuPPy is designed to operate across computing platforms and can accept data from a variety of FP data acquisition systems. The program presents users with a set of graphic user interfaces (GUIs) to load data and provide input parameters. Graphs are produced that can be easily exported for integration into scientific figures. As an open-source tool, GuPPy can be modified by users with knowledge of Python to fit their specific needs.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Cristina Segalin ◽  
Jalani Williams ◽  
Tomomi Karigo ◽  
May Hui ◽  
Moriel Zelikowsky ◽  
...  

The study of naturalistic social behavior requires quantification of animals’ interactions. This is generally done through manual annotation—a highly time-consuming and tedious process. Recent advances in computer vision enable tracking the pose (posture) of freely behaving animals. However, automatically and accurately classifying complex social behaviors remains technically challenging. We introduce the Mouse Action Recognition System (MARS), an automated pipeline for pose estimation and behavior quantification in pairs of freely interacting mice. We compare MARS’s annotations to human annotations and find that MARS’s pose estimation and behavior classification achieve human-level performance. We also release the pose and annotation datasets used to train MARS to serve as community benchmarks and resources. Finally, we introduce the Behavior Ensemble and Neural Trajectory Observatory (BENTO), a graphical user interface for analysis of multimodal neuroscience datasets. Together, MARS and BENTO provide an end-to-end pipeline for behavior data extraction and analysis in a package that is user-friendly and easily modifiable.


2021 ◽  
Author(s):  
Changliang Guo ◽  
Garrett J. Blair ◽  
Megha Sehgal ◽  
Federico N. Sangiuliano Jimka ◽  
Arash Bellafard ◽  
...  

We present a large field of view (FOV) open-source miniature microscope (MiniLFOV) designed to extend the capabilities of the UCLA Miniscope platform to large-scale, single cell resolution neural imaging in freely behaving large rodents and head-fixed mice. This system is capable of multiple imaging configurations, including deep brain imaging using implanted optical probes and cortical imaging through cranial windows. The MiniLFOV interfaces with existing open-source UCLA Miniscope DAQ hardware and software, can achieve single cell resolution imaging across a 3.6 × 2.7 mm field of view at 23 frames per second, has an electrically adjustable working distance of up to 3.5 mm±150 µm using an onboard electrowetting lens, incorporates an absolute head-orientation sensor, and weighs under 14 grams. The MiniLFOV provides a 30-fold larger FOV and yields 20-fold better sensitivity than Miniscope V3, and a 12-fold larger FOV with 2-fold better sensitivity than Miniscope V4. Power and data transmission are handled through a single, flexible coaxial cable down to 0.3 mm in diameter facilitating naturalistic behavior. We validated the MiniLFOV in freely behaving rats by simultaneously imaging >1000 GCaMP7s expressing neurons in the CA1 layer of the hippocampus and in head-fixed mice by simultaneously imaging ~2000 neurons in the mouse dorsal cortex through a 4 × 4 mm cranial window. For freely behaving experiments, the MiniLFOV supports optional wire-free operation using a 3.5 g wire-free data acquisition expansion board which enables close to 1-hour of wire-free recording with a 400 mAh (7.5 g) on-board single-cell lithium-polymer battery and expands wire-free imaging techniques to larger animal models. We expect this new open-source implementation of the UCLA Miniscope platform will enable researchers to address novel hypotheses concerning brain function in freely behaving animals.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Wijdenes ◽  
K. Haider ◽  
C. Gavrilovici ◽  
B. Gunning ◽  
M. D. Wolff ◽  
...  

AbstractNeural recordings made to date through various approaches—both in-vitro or in-vivo—lack high spatial resolution and a high signal-to-noise ratio (SNR) required for detailed understanding of brain function, synaptic plasticity, and dysfunction. These shortcomings in turn deter the ability to further design diagnostic, therapeutic strategies and the fabrication of neuro-modulatory devices with various feedback loop systems. We report here on the simulation and fabrication of fully configurable neural micro-electrodes that can be used for both in vitro and in vivo applications, with three-dimensional semi-insulated structures patterned onto custom, fine-pitch, high density arrays. These microelectrodes were interfaced with isolated brain slices as well as implanted in brains of freely behaving rats to demonstrate their ability to maintain a high SNR. Moreover, the electrodes enabled the detection of epileptiform events and high frequency oscillations in an epilepsy model thus offering a diagnostic potential for neurological disorders such as epilepsy. These microelectrodes provide unique opportunities to study brain activity under normal and various pathological conditions, both in-vivo and in in-vitro, thus furthering the ability to develop drug screening and neuromodulation systems that could accurately record and map the activity of large neural networks over an extended time period.


Sign in / Sign up

Export Citation Format

Share Document