supercompact cardinal
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 27 (2) ◽  
pp. 221-222
Author(s):  
Alejandro Poveda

AbstractThe dissertation under comment is a contribution to the area of Set Theory concerned with the interactions between the method of Forcing and the so-called Large Cardinal axioms.The dissertation is divided into two thematic blocks. In Block I we analyze the large-cardinal hierarchy between the first supercompact cardinal and Vopěnka’s Principle (Part I). In turn, Block II is devoted to the investigation of some problems arising from Singular Cardinal Combinatorics (Part II and Part III).We commence Part I by investigating the Identity Crisis phenomenon in the region comprised between the first supercompact cardinal and Vopěnka’s Principle. As a result, we generalize Magidor’s classical theorems [2] to this higher region of the large-cardinal hierarchy. Also, our analysis allows to settle all the questions that were left open in [1]. Finally, we conclude Part I by presenting a general theory of preservation of $C^{(n)}$ -extendible cardinals under class forcing iterations. From this analysis we derive several applications. For instance, our arguments are used to show that an extendible cardinal is consistent with “ $(\lambda ^{+\omega })^{\mathrm {HOD}}<\lambda ^+$ , for every regular cardinal $\lambda $ .” In particular, if Woodin’s HOD Conjecture holds, and therefore it is provable in ZFC + “There exists an extendible cardinal” that above the first extendible cardinal every singular cardinal $\lambda $ is singular in HOD and $(\lambda ^+)^{\textrm {{HOD}}}=\lambda ^+$ , there may still be no agreement at all between V and HOD about successors of regular cardinals.In Part II and Part III we analyse the relationship between the Singular Cardinal Hypothesis (SCH) with other relevant combinatorial principles at the level of successors of singular cardinals. Two of these are the Tree Property and the Reflection of Stationary sets, which are central in Infinite Combinatorics.Specifically, Part II is devoted to prove the consistency of the Tree Property at both $\kappa ^+$ and $\kappa ^{++}$ , whenever $\kappa $ is a strong limit singular cardinal witnessing an arbitrary failure of the SCH. This generalizes the main result of [3] in two senses: it allows arbitrary cofinalities for $\kappa $ and arbitrary failures for the SCH.In the last part of the dissertation (Part III) we introduce the notion of $\Sigma $ -Prikry forcing. This new concept allows an abstract and uniform approach to the theory of Prikry-type forcings and encompasses several classical examples of Prikry-type forcing notions, such as the classical Prikry forcing, the Gitik-Sharon poset, or the Extender Based Prikry forcing, among many others.Our motivation in this part of the dissertation is to prove an iteration theorem at the level of the successor of a singular cardinal. Specifically, we aim for a theorem asserting that every $\kappa ^{++}$ -length iteration with support of size $\leq \kappa $ has the $\kappa ^{++}$ -cc, provided the iterates belong to a relevant class of $\kappa ^{++}$ -cc forcings. While there are a myriad of works on this vein for regular cardinals, this contrasts with the dearth of investigations in the parallel context of singular cardinals. Our main contribution is the proof that such a result is available whenever the class of forcings under consideration is the family of $\Sigma $ -Prikry forcings. Finally, and as an application, we prove that it is consistent—modulo large cardinals—the existence of a strong limit cardinal $\kappa $ with countable cofinality such that $\mathrm {SCH}_\kappa $ fails and every finite family of stationary subsets of $\kappa ^+$ reflects simultaneously.


2018 ◽  
Vol 18 (01) ◽  
pp. 1850005 ◽  
Author(s):  
Gabriel Goldberg

We show from an abstract comparison principle (the Ultrapower Axiom) that the Mitchell order is linear on sufficiently strong ultrafilters: normal ultrafilters, Dodd solid ultrafilters, and assuming GCH, generalized normal ultrafilters. This gives a conditional answer to the well-known question of whether a [Formula: see text]-supercompact cardinal [Formula: see text] must carry more than one normal measure of order 0. Conditioned on a very plausible iteration hypothesis, the answer is no, since the Ultrapower Axiom holds in the canonical inner models at the finite levels of supercompactness.


2018 ◽  
Vol 83 (2) ◽  
pp. 634-641
Author(s):  
DOUGLAS ULRICH

AbstractWe show that if there is a supercompact cardinal, then Keisler’s order is not linear. More specifically, let Tn,k be the theory of the generic n-clique free k-ary graph for any n > k ≥ 3, and let TCas be the simple nonlow theory described by Casanovas in [2]. Then we show that TCas$$Tn,k always, and if there is a supercompact cardinal then Tn,k$$TCas.


2018 ◽  
Vol 83 (1) ◽  
pp. 1-12 ◽  
Author(s):  
MAXWELL LEVINE

AbstractWe assume the existence of a supercompact cardinal and produce a model with weak square but no very good scale at a particular cardinal. This follows work of Cummings, Foreman, and Magidor, but uses a different approach. We produce another model, starting from countably many supercompact cardinals, where □K,<K holds but □K, λ fails for λ < K.


2017 ◽  
Vol 23 (1) ◽  
pp. 1-109 ◽  
Author(s):  
W. HUGH WOODIN

AbstractWe give a fairly complete account which first shows that the solution to the inner model problem for one supercompact cardinal will yield an ultimate version ofLand then shows that the various current approaches to inner model theory must be fundamentally altered to provide that solution.


2015 ◽  
Vol 80 (1) ◽  
pp. 56-84
Author(s):  
LIUZHEN WU

AbstractThe Axiom of Strong Condensation, first introduced by Woodin in [14], is an abstract version of the Condensation Lemma ofL. In this paper, we construct a set-sized forcing to obtain Strong Condensation forH(ω2). As an application, we show that “ZFC + Axiom of Strong Condensation +”is consistent, which answers a question in [14]. As another application, we give a partial answer to a question of Jech by proving that “ZFC + there is a supercompact cardinal + any ideal onω1which is definable overH(ω2) is not precipitous” is consistent under sufficient large cardinal assumptions.


2014 ◽  
Vol 57 (3) ◽  
pp. 579-584 ◽  
Author(s):  
Paul Larson ◽  
Franklin D. Tall

AbstractWe establish that if it is consistent that there is a supercompact cardinal, then it is consistent that every locally compact, hereditarily normal space that does not include a perfect pre-image of ω1 is hereditarily paracompact.


2013 ◽  
Vol 56 (2) ◽  
pp. 317-325
Author(s):  
François G. Dorais

AbstractIn 1968, Galvin conjectured that an uncountable poset P is the union of countably many chains if and only if this is true for every subposet Q ⊆ P with size ℵ1. In 1981, Rado formulated a similar conjecture that an uncountable interval graph G is countably chromatic if and only if this is true for every induced subgraph H ⊆ G with size ℵ1. Todorčević has shown that Rado's conjecture is consistent relative to the existence of a supercompact cardinal, while the consistency of Galvin's conjecture remains open. In this paper, we survey and collect a variety of results related to these two conjectures. We also show that the extension of Rado's conjecture to the class of all chordal graphs is relatively consistent with the existence of a supercompact cardinal.


2011 ◽  
Vol 76 (4) ◽  
pp. 1441-1452 ◽  
Author(s):  
Remi Strullu

AbstractWe show that MRP + MA implies that ITP(λ,ω2) holds for all cardinal λ ≥ ω2. This generalizes a result by Weiβ who showed that PFA implies that ITP(λ, ω2) holds for all cardinal λ ≥ ω2. Consequently any of the known methods to prove MRP + MA consistent relative to some large cardinal hypothesis requires the existence of a strongly compact cardinal. Moreover if one wants to force MRP + MA with a proper forcing, it requires at least a supercompact cardinal. We also study the relationship between MRP and some weak versions of square. We show that MRP implies the failure of □(λ, ω) for all λ ≥ ω2 and we give a direct proof that MRP + MA implies the failure of □(λ, ω1) for all λ ≥ ω2.


Sign in / Sign up

Export Citation Format

Share Document