elementary embeddings
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 2)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
Christopher Perez

In a remarkable series of papers, Zlil Sela classified the first-order theories of free groups and torsion-free hyperbolic groups using geometric structures he called towers. It was later proved by Chloé Perin that if [Formula: see text] is an elementarily embedded subgroup (or elementary submodel) of a torsion-free hyperbolic group [Formula: see text], then [Formula: see text] is a tower over [Formula: see text]. We prove a generalization of Perin’s result to toral relatively hyperbolic groups using JSJ and shortening techniques.



2021 ◽  
pp. 2150024
Author(s):  
Trevor M. Wilson

We show that Weak Vopěnka’s Principle, which is the statement that the opposite category of ordinals cannot be fully embedded into the category of graphs, is equivalent to the large cardinal principle Ord is Woodin, which says that for every class [Formula: see text] there is a [Formula: see text]-strong cardinal. Weak Vopěnka’s Principle was already known to imply the existence of a proper class of measurable cardinals. We improve this lower bound to the optimal one by defining structures whose nontrivial homomorphisms can be used as extenders, thereby producing elementary embeddings witnessing [Formula: see text]-strongness of some cardinal.



2016 ◽  
Vol 167 (3) ◽  
pp. 309-334 ◽  
Author(s):  
John T. Baldwin ◽  
Paul B. Larson


2015 ◽  
Vol 21 (3) ◽  
pp. 251-269 ◽  
Author(s):  
MATTHEW FOREMAN

AbstractWe introduce a natural principleStrong Chang Reflectionstrengthening the classical Chang Conjectures. This principle is between a huge and a two huge cardinal in consistency strength. In this note we prove that it implies the existence of an inner model with a huge cardinal. The technique we explore for building inner models with huge cardinals adapts to show thatdecisiveideals imply the existence of inner models with supercompact cardinals. Proofs for all of these claims can be found in [10].1,2



2013 ◽  
Vol 164 (9) ◽  
pp. 855-865
Author(s):  
Moti Gitik ◽  
Saharon Shelah


2013 ◽  
Vol 78 (2) ◽  
pp. 562-578 ◽  
Author(s):  
Joan Bagaria ◽  
Andrew Brooke-Taylor

AbstractWe give a sharper version of a theorem of Rosický, Trnková and Adámek [13], and a new proof of a theorem of Rosický [12], both about colimits in categories of structures. Unlike the original proofs, which use category-theoretic methods, we use set-theoretic arguments involving elementary embeddings given by large cardinals such as α-strongly compact and C(n)-extendible cardinals.





2011 ◽  
Vol 76 (2) ◽  
pp. 519-540 ◽  
Author(s):  
Victoria Gitman

AbstractOne of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with V = L.



2011 ◽  
Vol 76 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Victoria Gitman ◽  
P. D. Welch

AbstractThis paper continues the study of the Ramsey-like large cardinals introduced in [5] and [14]. Ramsey-like cardinals are defined by generalizing the characterization of Ramsey cardinals via the existence of elementary embeddings. Ultrafilters derived from such embeddings are fully iterable and so it is natural to ask about large cardinal notions asserting the existence of ultrafilters allowing only α-many iterations for some countable ordinal α. Here we study such α-iterable cardinals. We show that the α-iterable cardinals form a strict hierarchy for α ≤ ω1, that they are downward absolute to L for , and that the consistency strength of Schindler's remarkable cardinals is strictly between 1-iterable and 2-iterable cardinals.We show that the strongly Ramsey and super Ramsey cardinals from [5] are downward absolute to the core model K. Finally, we use a forcing argument from a strongly Ramsey cardinal to separate the notions of Ramsey and virtually Ramsey cardinals. These were introduced in [14] as an upper bound on the consistency strength of the Intermediate Chang's Conjecture.



2011 ◽  
pp. 14-31 ◽  
Author(s):  
Andrés Eduardo Caicedo


Sign in / Sign up

Export Citation Format

Share Document