containment order
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2016 ◽  
Vol 13 (114) ◽  
pp. 20150881 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

Spatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure is greater than population structure in the containment or the volume order, then can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.



2015 ◽  
Author(s):  
Jorge Peña ◽  
Bin Wu ◽  
Arne Traulsen

AbstractSpatial structure greatly affects the evolution of cooperation. While in two-player games the condition for cooperation to evolve depends on a single structure coefficient, in multiplayer games the condition might depend on several structure coefficients, making it difficult to compare different population structures. We propose a solution to this issue by introducing two simple ways of ordering population structures: the containment order and the volume order. If population structure 𝒮1 is greater than population structure 𝒮2 in the containment or the volume order, then 𝒮1 can be considered a stronger promoter of cooperation. We provide conditions for establishing the containment order, give general results on the volume order, and illustrate our theory by comparing different models of spatial games and associated update rules. Our results hold for a large class of population structures and can be easily applied to specific cases once the structure coefficients have been calculated or estimated.



2010 ◽  
Vol 81 (2) ◽  
pp. 195-207 ◽  
Author(s):  
BOORAPA SINGHA ◽  
JINTANA SANWONG ◽  
R. P. SULLIVAN

AbstractMarques-Smith and Sullivan [‘Partial orders on transformation semigroups’, Monatsh. Math.140 (2003), 103–118] studied various properties of two partial orders on P(X), the semigroup (under composition) consisting of all partial transformations of an arbitrary set X. One partial order was the ‘containment order’: namely, if α,β∈P(X) then α⊆β means xα=xβ for all x∈dom α, the domain of α. The other order was the so-called ‘natural order’ defined by Mitsch [‘A natural partial order for semigroups’, Proc. Amer. Math. Soc.97(3) (1986), 384–388] for any semigroup. In this paper, we consider these and other orders defined on the symmetric inverse semigroup I(X) and the partial Baer–Levi semigroup PS(q). We show that there are surprising differences between the orders on these semigroups, concerned with their compatibility with respect to composition and the existence of maximal and minimal elements.



10.37236/799 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Martin Klazar

For classes ${\cal O}$ of structures on finite linear orders (permutations, ordered graphs etc.) endowed with containment order $\preceq$ (containment of permutations, subgraph relation etc.), we investigate restrictions on the function $f(n)$ counting objects with size $n$ in a lower ideal in $({\cal O},\preceq)$. We present a framework of edge $P$-colored complete graphs $({\cal C}(P),\preceq)$ which includes many of these situations, and we prove for it two such restrictions (jumps in growth): $f(n)$ is eventually constant or $f(n)\ge n$ for all $n\ge 1$; $f(n)\le n^c$ for all $n\ge 1$ for a constant $c>0$ or $f(n)\ge F_n$ for all $n\ge 1$, $F_n$ being the Fibonacci numbers. This generalizes a fragment of a more detailed theorem of Balogh, Bollobás and Morris on hereditary properties of ordered graphs.





Order ◽  
1988 ◽  
Vol 5 (3) ◽  
pp. 235-237 ◽  
Author(s):  
Glenn H. Hurlbert


Sign in / Sign up

Export Citation Format

Share Document