real analytic surface
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tommaso Rossi

Abstract We address the problem of integrability of the sub-Riemannian mean curvature of an embedded hypersurface around isolated characteristic points. The main contribution of this paper is the introduction of a concept of a mildly degenerate characteristic point for a smooth surface of the Heisenberg group, in a neighborhood of which the sub-Riemannian mean curvature is integrable (with respect to the perimeter measure induced by the Euclidean structure). As a consequence, we partially answer to a question posed by Danielli, Garofalo and Nhieu in [D. Danielli, N. Garofalo and D. M. Nhieu, Integrability of the sub-Riemannian mean curvature of surfaces in the Heisenberg group, Proc. Amer. Math. Soc. 140 2012, 3, 811–821], proving that the mean curvature of a real-analytic surface with discrete characteristic set is locally integrable.







Author(s):  
John Ryan

AbstractIntegrals related to Cauchy's integral formula and Huygens' principle are used to establish a link between domains of holomorphy in n complex variables and cells of harmonicity in one higher dimension. These integrals enable us to determine domains to which analytic functions on real analytic surface in Rn+1 may be extended to solutions to a Dirac equation.



Sign in / Sign up

Export Citation Format

Share Document