huygens principle
Recently Published Documents


TOTAL DOCUMENTS

250
(FIVE YEARS 35)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yazan Al-Alem ◽  
Syed M. Sifat ◽  
Yahia M.M. Antar ◽  
Ahmed A. Kishk

Abstract A simple antenna with a 20-dBi gain is proposed. A thorough analysis of the propagation mechanism accompanied by a unique physical insight is provided. The realized structure has a low profile, low-cost, and compact features, a detailed link to the Fresnel-Huygens principle is provided.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Dacheng Wang ◽  
Song Sun ◽  
Zheng Feng ◽  
Wei Tan

AbstractWe demonstrate terahertz dielectric metasurfaces with anisotropic multipoles within the framework of the generalized Huygens principle, in which the interference among these multipoles achieves giant phase shift with broadened bandwidth and high transmission coefficients. More importantly, owing to the anisotropic design, various phase delays between π/2 and 3π/2 are obtained, which convert the incident linearly polarized terahertz wave into right/left-handed circularly polarized light, elliptically polarized light and cross-polarized light. Both simulation and experimental results verify complete terahertz polarization control with the ellipticity ranging from 1 to − 1, which paves a way for polarization-related applications of terahertz meta-devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Forrest L. Anderson

AbstractHuygens' Principle (1678) implies that every point on a wave front serves as a source of secondary wavelets, and the new wave front is the tangential surface to all the secondary wavelets. But two problems arise: portions of wavelets that exist outside of the new wave front combine to form a wake. Also there are two tangential surfaces so wave fronts are propagated in both the forward and backward directions. These problems have not previously been resolved by using a geometrical theory with impulsive wavelets that are in harmony with Huygens' geometrical description. Doing so would provide deeper understanding of and greater intuition into wave propagation, in addition to providing a new model for wave propagation analysis. The interpretation, developed here, of Huygens' geometrical construction shows Huygens' Principle to be correct: as for the wake, the Huygens' wavelets disappear when combined except where they contact their common tangent surfaces, the new propagating wave fronts. As for the backward wave, a source propagates both a forward wave and a backward wave when it is stationary, but it propagates only the forward wave front when it is advancing with a speed equal to the propagation speed of the wave fronts.


2021 ◽  
Vol 29 (18) ◽  
pp. 28954
Author(s):  
Malong Fu ◽  
Yang Zhao

2021 ◽  
Author(s):  
Dacheng Wang ◽  
Song Sun ◽  
Zheng Feng ◽  
Wei Tan

Abstract We demonstrate terahertz dielectric metasurfaces with anisotropic multipoles within the framework of the generalized Huygens principle, in which the interference among these multipoles achieves giant phase shift with broadened bandwidth and high transmission coefficients. More importantly, owing to the anisotropic design, various phase delays between π/2 and 3π/2 are obtained, which convert the incident linearly polarized terahertz wave into right/left-handed circularly polarized light, elliptically polarized light and cross polarized light. Both simulation and experimental results verify complete terahertz polarization control with the ellipticity ranging from 1 to -1, which paves a way for polarization–related applications of terahertz meta-devices.


2021 ◽  
Vol 209 ◽  
pp. 112337
Author(s):  
Miguel Ángel Javaloyes ◽  
Enrique Pendás-Recondo ◽  
Miguel Sánchez
Keyword(s):  

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250005
Author(s):  
Lorenzo Sani ◽  
Alessandro Vispa ◽  
Riccardo Loretoni ◽  
Michele Duranti ◽  
Navid Ghavami ◽  
...  

MammoWave is a microwave imaging device for breast lesions detection, which operates using two (azimuthally rotating) antennas without any matching liquid. Images, subsequently obtained by resorting to Huygens Principle, are intensity maps, representing the homogeneity of tissues’ dielectric properties. In this paper, we propose to generate, for each breast, a set of conductivity weighted microwave images by using different values of conductivity in the Huygens Principle imaging algorithm. Next, microwave images’ parameters, i.e. features, are introduced to quantify the non-homogenous behaviour of the image. We empirically verify on 103 breasts that a selection of these features may allow distinction between breasts with no radiological finding (NF) and breasts with radiological findings (WF), i.e. with lesions which may be benign or malignant. Statistical significance was set at p<0.05. We obtained single features Area Under the receiver operating characteristic Curves (AUCs) spanning from 0.65 to 0.69. In addition, an empirical rule-of-thumb allowing breast assessment is introduced using a binary score S operating on an appropriate combination of features. Performances of such rule-of-thumb are evaluated empirically, obtaining a sensitivity of 74%, which increases to 82% when considering dense breasts only.


2021 ◽  
Vol 29 (4) ◽  
pp. 6257
Author(s):  
Malong Fu ◽  
Yang Zhao

Sign in / Sign up

Export Citation Format

Share Document