rectilinear section
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 2)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
pp. 129-144
Author(s):  
S. Pylypaka ◽  
◽  
A. Nesvidomin ◽  

The movement of the material on the inclined belt of the conveyor takes place during transportation or its frictional cleaning. For an inclined moving plane (slide), the angle of its inclination to the horizontal plane is decisive. The absolute motion of a particle is the sum of two motions - the portable belt and the relative particle along the belt, so it is affected by the angle between the vectors of the greatest inclination of the plane and the transfer velocity of the plane (tape). The purpose of the study is to determine the motion of a material particle on the conveyor belt for the case when the angle between the vector of the line of greatest inclination of the conveyor plane and the direction of its transfer speed is arbitrary. To do this, the conveyor belt element was depicted as a rectangle with an axis of symmetry drawn along the direction of translational movement. In the initial position, the plane was placed horizontally, so the angle of greatest inclination is absent. In the future, the plane was given an arbitrary location in space due to alternate rotation around the sides bounding its compartment or around the axes of symmetry of the compartment, which is equivalent. The relative and absolute motions of the material particle along the moving web of the conveyor are considered for the case when the line of the greatest inclination of the web plane makes an arbitrary angle with the direction of the portable motion of the web. A system of differential equations of motion is compiled and solved. The obtained results are illustrated graphically. It is established that the nature of the relative motion of a particle on an inclined plane moving rectilinearly and uniformly depends on the direction of the vector of the line of the greatest inclination and the value of the angle of inclination of this plane. If the angle of inclination is less than the angle of friction, then the lateral feed of the particle will eventually stop either on the curved section of the trajectory or on a straight line that is parallel to the line of greatest inclination. The stopping place of the particle depends on the value of the initial velocity. At an angle of inclination of the plane equal to the angle of friction, the particle during the movement along the curved section of the trajectory reduces its initial velocity by half and then moves in a straight line and evenly. If the angle of inclination of the plane is greater than the angle of friction, the particle in relative motion along the curvilinear section of the trajectory first reduces the velocity, and when approaching a rectilinear section, its velocity increases and continues to increase on a rectilinear section of the trajectory. Key words: material particle, conveyor, inclined plane, plane inclination angle, particle velocity


1965 ◽  
Vol 20 (1) ◽  
pp. 99-102 ◽  
Author(s):  
P. S⊘lvsteen

We have calculated how the carbon monoxide concentration changes when subjects with different distributions of ventilation and lung diffusing capacity (Dl) respire in a small bag. The curve [loge CO concentration in the bag] versus [time] will sooner or later appear as a straight line. Dl is calculated from the slope of the rectilinear section of the curve and from lung and bag volume. If the curve becomes rectilinear within the period considered, Dl is calculated too low. In some cases the curve will not be rectilinear until more than 45 sec have passed, but will appear to be rectilinear during the period from 30 to 45 sec. If such an experiment is discontinued when 45 sec (the usual duration of experiment) have passed, Dl can be calculated at too high, at correct, or at too low values. nonuniform distribution of lung diffusing capacity Submitted on February 18, 1964


Sign in / Sign up

Export Citation Format

Share Document