experimental melting point
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2013 ◽  
Vol 423-426 ◽  
pp. 935-938 ◽  
Author(s):  
Ji Feng Li ◽  
Xiao Ping Zhao ◽  
Jian Liu

Molecular dynamics simulations were performed to calculate the melting points of perfect crystalline aluminum to high pressures. Under ambientpressure, there exhibits about 20% superheating before melting compared to the experimental melting point. Under high pressures, thecalculated melting temperature increases with the pressure but at a decreasing rate, which agrees well with the Simon's melting equation. Porosity effect was also studied for aluminum crystals with various initial porosity at ambient pressure, which shows that the equilibrium melting point decreases with the initial porosity as experiments expect.


1995 ◽  
Vol 408 ◽  
Author(s):  
P. W.-C. Kung ◽  
J. T. Books ◽  
C. M. Freeman ◽  
S. M. Levine ◽  
B. Vessali ◽  
...  

AbstractWe have used constant pressure molecular dynamics calculations to explore the behavior at various temperatures of two molecular crystals: benzene and a brominated phenyl compound. We observed a melting transition by heating the crystals from a low temperature. In the case of benzene, we performed one heating run of about 1 ns and obtained agreement with the experimental melting point to within some 8%. We have also simulated the melting of a more complex molecular crystal that contains bromine and phenyl groups. We performed four heating runs, with different rates of heating. For total simulation times of about 100, 220, 770, and 1 I50ps, the heating runs predicted melting temperatures that differed from the experimental melting temperature by 53%, 33%, 25%, and 9% respectively.


Sign in / Sign up

Export Citation Format

Share Document