Molecular Dynamics Simulations on Melting of Aluminum

2013 ◽  
Vol 423-426 ◽  
pp. 935-938 ◽  
Author(s):  
Ji Feng Li ◽  
Xiao Ping Zhao ◽  
Jian Liu

Molecular dynamics simulations were performed to calculate the melting points of perfect crystalline aluminum to high pressures. Under ambientpressure, there exhibits about 20% superheating before melting compared to the experimental melting point. Under high pressures, thecalculated melting temperature increases with the pressure but at a decreasing rate, which agrees well with the Simon's melting equation. Porosity effect was also studied for aluminum crystals with various initial porosity at ambient pressure, which shows that the equilibrium melting point decreases with the initial porosity as experiments expect.

Author(s):  
Saeed Zare Chavoshi ◽  
Shuozhi Xu ◽  
Saurav Goel

We performed molecular dynamics simulations to study the equilibrium melting point of silicon using (i) the solid–liquid coexistence method and (ii) the Gibbs free energy technique, and compared our novel results with the previously published results obtained from the Monte Carlo (MC) void-nucleated melting method based on the Tersoff-ARK interatomic potential (Agrawal et al. Phys. Rev. B 72 , 125206. ( doi:10.1103/PhysRevB.72.125206 )). Considerable discrepancy was observed (approx. 20%) between the former two methods and the MC void-nucleated melting result, leading us to question the applicability of the empirical MC void-nucleated melting method to study a wide range of atomic and molecular systems. A wider impact of the study is that it highlights the bottleneck of the Tersoff-ARK potential in correctly estimating the melting point of silicon.


1991 ◽  
Vol 238 ◽  
Author(s):  
Michael J. Uttormark ◽  
Michael O. Thompson ◽  
Paulette Clancy

ABSTRACTMolecular Dynamics simulations of the melting of small crystalline clusters (≃800 atoms) in the liquid have been performed at various temperatures above the equilibrium melting point. The melting rates as functions of size and temperature are derived and compared to that predicted by Classical Nucleation Theory. It is found that the driving force for the melting of clusters does not follow the form assumed in the theory, and that this difference is most apparent for clusters containing less than 300 atoms. The implications of these findings on nucleation phenomenon and possible sources for the discrepancies are discussed.


Sign in / Sign up

Export Citation Format

Share Document