ellipse packing
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 10)

H-INDEX

2
(FIVE YEARS 1)

2019 ◽  
Author(s):  
Kai Xu

The two-dimensional (2D) Lewis’s law and Aboav-Weaire’s law are two simple formulas derived from empirical observations. Numerous attempts have been made to improve the empirical formulas. In this study, we simulated a series of Voronoi diagrams by randomly disordered the seed locations of a regular hexagonal 2D Voronoi diagram, and analyzed the cell topology based on ellipse packing. Then, we derived and verified the improved formulas for Lewis’s law and Aboav-Weaire’s law. Specifically, we found that the upper limit of the second moment of edge number is 3. In addition, we derived the geometric formula of the von Neumann-Mullins’s law based on the new formula of the Aboav-Weaire’s law. Our results suggested that the cell area, local neighbor relationship, and cell growth rate are closely linked to each other, and mainly shaped by the effect of deformation from circle to ellipse and less influenced by the global edge distribution.


2019 ◽  
Author(s):  
Kai Xu

The two-dimensional (2D) Lewis’s law and Aboav-Weaire’s law are two simple formulas derived from empirical observations. Numerous attempts have been made to improve the empirical formulas. In this study, we simulated a series of Voronoi diagrams by randomly disordered the seed locations of a regular hexagonal 2D Voronoi diagram, and analyzed the cell topology based on ellipse packing. Then, we derived and verified the improved formulas for Lewis’s law and Aboav-Weaire’s law. Specifically, we found that the upper limit of the second moment of edge number is 3. In addition, we derived the geometric formula of the von Neumann-Mullins’s law based on the new formula of the Aboav-Weaire’s law. Our results suggested that the cell area, local neighbor relationship, and cell growth rate are closely linked to each other, and mainly shaped by the effect of deformation from circle to ellipse and less influenced by the global edge distribution.


2019 ◽  
Author(s):  
Kai Xu

The two-dimensional (2D) Lewis’s law and Aboav-Weaire’s law are two simple formulas derived from empirical observations. Numerous attempts have been made to improve the empirical formulas. In this study, we simulated a series of Voronoi diagrams and analyzed the cell topology based on ellipse packing and then given the improved formulas. Specifically, we found that the upper limit of the second moment of edge number is 3. In addition, we derived the geometric formula of the von Neumann-Mullins’s law based on the improved formula of Aboav-Weaire’s law.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6933 ◽  
Author(s):  
Kai Xu

Background Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to describe the topology of two-dimensional (2D) structures; however, their theoretical bases remain unclear. Methods We used R software with the Conicfit package to fit ellipses based on the geometric parameters of polygonal cells of ten different kinds of natural and artificial 2D structures. Results Our results indicated that the cells could be classified as an ellipse’s inscribed polygon (EIP) and that they tended to form the ellipse’s maximal inscribed polygon (EMIP). This phenomenon was named as ellipse packing. On the basis of the number of cell edges, cell area, and semi-axes of fitted ellipses, we derived and verified new relations of Lewis’s law and Aboav-Weaire’s law. Conclusions Ellipse packing is a short-range order that places restrictions on the cell topology and growth pattern. Lewis’s law and Aboav-Weaire’s law mainly reflect the effect of deformation from circle to ellipse on cell area and the edge number of neighboring cells, respectively. The results of this study could be used to simulate the dynamics of cell topology during growth.


2019 ◽  
Author(s):  
Kai Xu

Background: Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to describe the topology of two-dimensional (2D) structures; however, their theoretical bases remain unclear. Methods: We used R package Conicfit software to fit ellipses based on the geometric parameters of polygonal cells with ten different kinds of natural and artificial 2D structures. Results: Our results indicated that the cells could be classified as ellipse’s inscribed polygon (EIP) and that they tended to form ellipse’s maximal inscribed polygon (EMIP). This phenomenon was named as ellipse packing. On the basis of the number of cell edges, cell area, and semi-axes of fitted ellipses, we derived and verified new relations of Lewis’s law and Aboav-Weaire’s law . Conclusions: Ellipse packing is a short-range order that places restrictions on the cell topology and growth pattern. Lewis’s law and Aboav-Weaire’s law mainly reflect the effect of deformation from circle to ellipse on cell area and the edge number of neighboring cells, respectively. The results of this study could be used to simulate the dynamics of cell topology during growth.


2019 ◽  
Author(s):  
Kai Xu

Background: Lewis’s law and Aboav-Weaire’s law are two fundamental laws used to describe the topology of two-dimensional (2D) structures; however, their theoretical bases remain unclear. Methods: We used R package Conicfit software to fit ellipses based on the geometric parameters of polygonal cells with ten different kinds of natural and artificial 2D structures. Results: Our results indicated that the cells could be classified as ellipse’s inscribed polygon (EIP) and that they tended to form ellipse’s maximal inscribed polygon (EMIP). This phenomenon was named as ellipse packing. On the basis of the number of cell edges, cell area, and semi-axes of fitted ellipses, we derived and verified new relations of Lewis’s law and Aboav-Weaire’s law . Conclusions: Ellipse packing is a short-range order that places restrictions on the cell topology and growth pattern. Lewis’s law and Aboav-Weaire’s law mainly reflect the effect of deformation from circle to ellipse on cell area and the edge number of neighboring cells, respectively. The results of this study could be used to simulate the dynamics of cell topology during growth.


Sign in / Sign up

Export Citation Format

Share Document